A long-awaited answer. Gene discovery in the epilepsies is continuing, and some novel genetic etiologies are quite surprising given that the particular genes had previously been described in a completely different context. One of these examples is TRPM3. In our recent publication, we further define TRPM3 as a gene causative of a variety of neurodevelopmental disorders. Also notably, we find that the anti-seizure medication primidone can be a helpful treatment in individuals with TRPM3. Beyond outlining the TRPM3 spectrum, our publication helped us find a long-awaited diagnosis for one of our research participants, one that took four years to prove. Here is the TRPM3 story. Continue reading
Tag Archives: de novo mutations
DNM1 and when transcripts matter more than genes
What comes next. Earlier this month, Ingo made a bit of a splash at the American Epilepsy Society Annual Course, with his surprising comment that, in some contexts, “genes don’t matter.” This was in reference to transcripts and gene expression, which ultimately determine if and how variants can cause disease. In this post, I wanted to explore this idea, diving into the world of transcripts and their increasing relevance in approaching diagnosis and treatment of genetic epilepsies and neurodevelopmental disorders. And I wanted to share one of the most surprising findings in epilepsy genetics in 2022, namely, how examining transcripts rather than genes helped us understand how an intronic variant can be dominant-negative. Continue reading
KCNC2 – a novel epilepsy gene harbors an unusual phenotypic spectrum
Shaw. It has been a while since we have written about novel gene discoveries in the epilepsies, so I wanted to start this blog post with a general introduction to the genes that are still undiscovered, waiting to be identified. Currently, we assume that there are several hundred genetic etiologies for human epilepsies “out there” that we have not characterized yet. One of the most recent members to join the group of epilepsy genes is KCNC2 that we described in a recent publication. KCNC2, coding for a member of the Shaw-related voltage-gated potassium channels, presents with a phenotypic spectrum that is different from many other epilepsy genes. Continue reading
Exploring the dark matter of the human genome – de novo mutations in regulatory elements
Unsolved cases. We are in an era of dramatic progress in understanding the genetic causes of neurologic disorders. In spite of this progress, many cases remain unsolved even after whole exome sequencing. One hypothesis for this missing heritability is that “non-coding” mutations outside the exome may explain at least some of these unsolved cases. A recent study looked at de novonon-coding variants in patients with neurodevelopmental disorders. The study sheds new light on this question and reminds us that, despite all the recent progress, there is much still to learn about vast portions of the genome. Continue reading
Exomes on the go – adventures with wANNOVAR
Going cloud. This post is about my most recent discovery when I was trying to modernize some of the bioinformatics tools that I had on my laptop. My experience with variant annotation is a good example of the latest trend in bioinformatics: replacing precise, but difficult-to-use tools by web-based convenience – I didn’t need to install anything after all. This is a brief journey into the world of variant annotation, taking advantage of my new favorite tool, wANNOVAR and applying it to the Epi4K dataset. Continue reading
SCN8A encephalopathy – and how it differs from Dravet Syndrome
Nav1.6. For some reason, SCN8A always met some resistance. In contrast to other epilepsy genes, it took a while for the community to embrace this gene as a genuine cause of epileptic encephalopathies. A recent publication in Neurology now investigates the phenotypic spectrum of SCN8A encephalopathy – and points out important features that distinguish this condition from Dravet Syndrome. Continue reading
PURA mutations and when diverse phenotypes become a single syndrome
Reverse. With the increasing amount of genetic information available in patients with various neurodevelopmental syndromes, some genes will be observed more than once in patients. In a recent study in the Journal of Medical Genetics, the authors trace back the phenotypes of individuals carrying de novo mutations in PURA. However, there seems to be a wide range of clinical features with a seemingly inverse genotype-phenotype correlation. Continue reading
The three challenges of epilepsy precision medicine
Half Moon Bay. I am on my way back from the Precision Medicine Workshop at Half Moon Bay, realizing again that blog posts from scientific meetings are often boring and difficult to write. However, let me try to put together a few thoughts about this meeting. Basically, there are three challenges for epilepsy genetics in the era of precision medicine. Continue reading
How to find recessive disease genes for epileptic encephalopathies
The E2 story continues. There has been major progress in identifying the role of de novo mutations in infantile spasms and other epileptic encephalopathies. Over the last two years, more than 20 new genes for epileptic encephalopathies were discovered and we have good evidence suggesting that de novo mutations play a major role in these disorders. Moreover, we have gotten a good sense on how complicated it can be to call a de novo mutation pathogenic given the flood of rare genetic variants in the human genome. However, de novo mutations are not what we think about clinically when assessing a patient with new-onset epileptic encephalopathy. In a clinical setting, we are often concerned about underlying metabolic disorders, many of which are recessive. Accordingly, we felt that the next task of the E2 consortium was to assess the role of inherited variants in epileptic encephalopathies. Just to tell you in advance, it is not as easy as it sounds.
Precision medicine in genetic epilepsies – three criteria to consider
Three criteria. You hear the phrase precision medicine quite frequently these days and might wonder what this is all about. In a nutshell, in the context of genetic epilepsies, the basic idea behind precision medicine is to use genetic patient information for treatment decisions. The broader vision behind this aims at improving the lives of individuals with epilepsy by making smarter and faster treatment decisions, which lead to better treatment response and fewer side effects. But how should we assess information on reports of precision medicine in the literature? Here are the three important criteria to assess. Continue reading