Inhibition. GABA is the main inhibitory neurotransmitter in the the Central Nervous System. Given that epilepsy is typically associated with increased excitability, all mechanisms related to GABA signaling are of natural interest to the epilepsy community. Almost 15 years ago, mutations in GABRA1, coding for alpha-1 subunit of the GABA-A receptor, have been identified in familial Juvenile Myoclonic Epilepsy, but there has been relative silence around this gene since. Now, two publications highlight the other side of GABRA1 as a gene for epileptic encephalopathies, putting the GABA receptor into the spotlight again.
Tag Archives: GABRA1
GABRB3, 15q dups, and CNVs from exomes
GABAergic. Let’s start out with a provocative statement. There is a single gene that may explain more cases of Lennox-Gastaut Syndrome (LGS) and Infantile Spasms (IS) than you would expect, rivalling SCN1A for the most common gene found in this group of patients. It’s a gene that you are probably aware of but that you may think to be a very rare finding. In a recent publication in Annals of Neurology, the Epi4K consortium published their recent analysis of copy number variations that were derived from exome data. Combining de novo mutations and copy number variations points to GABRB3 as a major player in LGS and IS, explaining probably more than 2% of patients. Let’s find out about the twilight zone, strategies to obtain structural variants from exomes, and the re-emergence of the 15q duplication syndrome. Continue reading
SCN1A – this is what you should know in 2015
2015 update. Our updates on SCN1A mutations and Dravet Syndrome are amongst our most frequently read posts. Therefore, following the tradition of annual reviews that we started last year, we thought that a quick update on SCN1A would be timely again, building on our previous 2014 update. These are the five things about SCN1A that you should know in 2015. Continue reading
Cause or coincidence – recessive SCN1A variants in Dravet Syndrome
Recessive epilepsies. Dravet Syndrome is one of the most prominent genetic epilepsies and presents in the first year of life with prolonged fever-associated seizures. Haploinsufficiency of SCN1A, either through mutations or deletions, is the major cause of Dravet Syndrome. In a recent publication in the European Journal of Pediatric Neurology, two families with recessive Dravet Syndrome and biallelic SCN1A variants are reported. Let’s have a look at how to interpret these findings. Continue reading
Publications of the week – Dravet Syndrome, TBC1D24, and CSTB
Issue 6/2015. Publications from the most recent issue of Epilepsia are very prominent in this week’s selection of publications. We discuss the frequency of Dravet Syndrome, a novel family with a TBC1D24 mutation, and the role of Cystatin B (CSTB) in Juvenile Myoclonic Epilepsy. Continue reading
Publications of the week – GABRG2, CACNA1A, and ALG13
Issue 5/2015. Each of these three genes may ring a bell, but the context in which they were described this week is new. Here is our overview of some of the most relevant publications this week. Continue reading
Beyond SCN1A – Copy Number Variations in fever-associated epilepsies
Fever and epilepsy. When it comes to epilepsy and fever, either Febrile Seizures or Dravet Syndrome are usually the most prominent topics on our blog. However, in addition to these syndromes, there various other epilepsies that have fever-related seizures as a prominent feature. In a recent publication in Epilepsia, we investigated the role of microdeletions in a group of patients with prominent fever-associated epilepsies. Our findings suggest that fever-associated epilepsy syndromes may be a presentation of known microdeletion syndromes. Continue reading
Publications of the week – SRP9, Nebulin, and Kuf’s disease
Issue 2/2015. For the second issue of our publications of the week in 2015, we have selected recent publications on the genetics of Febrile Seizures, the complexities of interpreting variants in large genes and functional studies on progressive myoclonus epilepsies due to mutations in SCARB2 and CTSF. Continue reading
SCN8A encephalopathy – and how it differs from Dravet Syndrome
Nav1.6. For some reason, SCN8A always met some resistance. In contrast to other epilepsy genes, it took a while for the community to embrace this gene as a genuine cause of epileptic encephalopathies. A recent publication in Neurology now investigates the phenotypic spectrum of SCN8A encephalopathy – and points out important features that distinguish this condition from Dravet Syndrome. Continue reading
Beyond the Ion Channel – and back
Where do all the ion channels come from? I would like to start off with a brief commentary about the current state of gene discovery in human epilepsy. Some of our readers rightfully took offense to my previous statement that gene discovery in epilepsy it over – quite the contrary is true, and I apologize for any confusion that I may have caused. Gene discovery in epilepsy is one of the few areas of human genetics with an ongoing, rapid sequence of gene discovery with a tremendous translational potential. But we also need to reconsider the name of this blog – we are far from being beyond the ion channel. The ion channel concept has made a remarkable return in human epilepsy genetics. Let’s find out why. Continue reading