The millennium variant – SCN1B, gene validity, and GEFS+

800 years. The discovery of SCN1B as a causative gene for Genetic Epilepsy with Febrile Seizures Plus (GEFS+) was one of the most pivotal moments in epilepsy genetics. This discovery not only shaped our understanding of the channelopathy concept, but also highlighted the importance of careful phenotyping. Therefore, it may be surprising that SCN1B took almost a quarter of a century to accrue sufficient evidence to be considered as a definite epilepsy gene. However, this is not the only aspect where SCN1B operates on its own time scale. In a recent publication, one of the most common disease variants in SCN1B could be traced back more than 800 years to a single founder event. Here is a 2023 update on the journey of one of the most well-known but also most mysterious epilepsy genes whose origins are lost in the depth of time. Continue reading

SCN1A and Dravet Syndrome – your questions for the Channelopathist

Comments. After posting our 2015 update on what you should know about SCN1A, we received a number of comments on our blog and by email. We usually have the policy to respond to every comment individually. However, after we had realized that we had fallen behind with a few replies for several weeks, we felt that it might be worthwhile rephrasing some of the questions as general topics to write about, especially since many of your questions raised interesting points. Here are the questions that you asked regarding SCN1A and Dravet Syndrome. Continue reading

Cause or coincidence – recessive SCN1A variants in Dravet Syndrome

Recessive epilepsies. Dravet Syndrome is one of the most prominent genetic epilepsies and presents in the first year of life with prolonged fever-associated seizures. Haploinsufficiency of SCN1A, either through mutations or deletions, is the major cause of Dravet Syndrome. In a recent publication in the European Journal of Pediatric Neurology, two families with recessive Dravet Syndrome and biallelic SCN1A variants are reported. Let’s have a look at how to interpret these findings. Continue reading

Heat at the synapse – STX1B mutations in fever-associated epilepsies

Febrile Seizures. The discovery of the genes for fever-associated epilepsies was one of the most relevant milestones in epilepsy genetics. Discovery of the underlying genes including SCN1A, SCN1B and GABRG2 was tightly linked to the development of the Genetic/Generalized Epilepsy with Febrile Seizures Plus (GEFS+) concept, describing the spectrum of epilepsy phenotypes seen in families with these mutations. Gene discovery in GEFS+, however, has slowed down in recent years, and no further causative genes had been identified for more than a decade. Now, in a recent paper in Nature Genetics, mutations in STX1B are found as a novel cause for fever-associated epilepsies. Continue reading

SETBP1, ZMYND11, and the power of joint exome and CNV analysis

Parallel worlds. There are two fields of genetics for neurodevelopmental disorders that currently produce large amounts of data – the field of copy number variation analysis and the field of exome sequencing. When assigning pathogenicity, information from both genetic technologies are rarely considered jointly. A recent study in Nature Genetics now performs a combined analysis of a large CNV and exome datasets in intellectual disability and autism. Interestingly, this method produces robust results, highlighting novel causative genes. Continue reading

Have we given up on the genetics of febrile seizures?

Fever, genes, and seizures. Undoubtedly, febrile seizures are the most common epilepsy syndrome in humans. Up to 5% of children have febrile seizures. In most children, these febrile seizures are self-limiting, and there is no recurrence. Usually, no long-term treatment is required. We know from family studies and twin studies that febrile seizures have a significant genetic component. Now here are two surprising facts: first, the genetic contribution to febrile seizures is entirely unknown. Secondly, to my knowledge, the genetic contribution to the most common epilepsy syndrome in man has not been addressed in any of the current large-scale studies. Let’s review why this is the case and why we should change this. Continue reading

The top three publications in epilepsy genetics 25 years ago

Looking back. In this week’s ILAE Genetics Commission post, we would like to look 25 years back and examine the most important publication in the field in 1989, the year the Berlin wall fell. What concepts did we have back then and how did our understanding of epilepsy and genes change? Here are the top three publications of 1989. Continue reading

GABRA1 and STXBP1 as novel genes for Dravet Syndrome

Beyond SCN1A. Dravet Syndrome is a severe fever-associated epileptic encephalopathy. While the large majority of patients with Dravet Syndrome carry mutations in the SCN1A gene, the genetic basis is unknown in up to 20% of patients. Some female patients with Dravet-like epilepsies have mutations in PCDH19, but other than this, no additional major gene for typical Dravet Syndrome is known. In a recent paper in Neurology, de novo mutations in GABRA1 and STXBP1 are identified as novel causes for Dravet Syndrome. In addition, several SCN1A-negative patients were shown to have mutations in SCN1A that were initially missed. Continue reading