Somatic mosaicism of SLC35A2 in focal epilepsy: an emerging common genetic mechanism

Somatic mosaicism in focal epilepsy. Recent findings highlighted the role of somatic parental mosaicism in epileptic encephalopathies. However, somatic mosaicism has also emerged over the last few years as a prominent mechanism in the pathogenesis of lesional focal epilepsies, including focal cortical dysplasia (FCD) type 2 and hemimegalencephaly. Previous studies have identified the role of mosaicism of genes such as MTOR, TSC1/TSC2, and genes encoding components of the PI3K/AKT pathway in patients with epilepsy secondary to brain malformations. A recent study in Annals of Neurology has identified a new unrelated genetic cause of refractory non-lesional focal epilepsy, which leads us to wonder what role mosaicism may be playing in focal epilepsies without obvious findings on MRI.
Continue reading

The genetic architecture of the epilepsies, as told by 8,500 gene panels

Epilepsy gene panel. Testing for genetic causes in human epilepsy is typically performed using gene panels. In contrast to our research-based exome studies in an academic setting, much of the gene panel testing is performed through commercial laboratories and much of the existing data is usually inaccessible to the scientific community. In a recent publication in Epilepsia, a large US-based diagnostic laboratory reports on some of their existing data on epilepsy gene panels by reporting the results of more than 8500 epilepsy gene panels – a cohort size that is more than five times larger than any prior exome or gene panel study in the epilepsy field. I was asked to write an editorial on this publication, and I also wanted summarize on our blog three key messages that you can take away from this study. Continue reading

Navigating choppy waters: psychosocial implications of uncertainty

Psychosocial implications of uncertainty. As navigators of genetic testing, genetic counselors have seen it all – smooth seas, choppy waters and even the rare tsunami. Genetic testing sounds, well, so promising. Huge gene panels for epilepsy, whole exome sequencing – guaranteed to find an answer, right? Wrong. And let’s not even talk about secondary (incidental) findings, variants of uncertain significance and (gulp) non-paternity. While our technology has changed, navigating the choppy waters of psychosocial issues in genetic testing has not. Previous EpiGC posts to this blog have highlighted the challenges inherent to interpreting variants of uncertain significance. Now let’s talk about the psychosocial implications of dealing with uncertainty.

Continue reading

Being informed about informed consent

Key components. There are many factors for patients to consider when deciding whether to undergo genetic testing for epilepsy. Perceptions regarding the benefits and drawbacks can vary from one patient to another, and only the patient can determine whether the benefits of testing outweigh the drawbacks in their specific situation. Testing that seems straightforward to a clinician may not be so for a patient. As such, the process of informed consent is crucial to avoid harm and disappointment. Continue reading

MECP2 – Rett Syndrome in the era of exome-first studies

Rett. We have written very little about MECP2 on Beyond the Ion Channel. MECP2 is the gene for Rett Syndrome, a neurodegenerative disorder almost exclusively affecting females. Classical Rett Syndrome is characterized by developmental regression in the first two years of life and the development of distinctive hand movements, which historically led to Rett Syndrome being considered a recognizable entity. This blog post is the introduction to our MECP2 Epilepsiome page. However, in 2016, a time when many genes are re-defined by exome studies, I was wondering whether Rett Syndrome is still the classical syndrome that I initially learned about.

Continue reading

A clinician’s guide to genetic test selection: navigating the Wild West

The Wild West. The diagnostic genetic testing landscape in 2016 is a paradox. In theory genetic testing has never been more widely available clinically, with over 20 diagnostic laboratories in the US alone offering a variety of genetic testing options for patients with epilepsy, ranging from single gene testing to NGS panels to whole exome sequencing. However, access to and reimbursement of genetic services varies widely, with no consensus on an approach to testing or professional guidelines to aide clinicians. Here is our brief guide to epilepsy genetic test selection for busy clinicians. Continue reading

The two faces of GABRA1 – from familial epilepsy to epileptic encephalopathy

Inhibition. GABA is the main inhibitory neurotransmitter in the the Central Nervous System. Given that epilepsy is typically associated with increased excitability, all mechanisms related to GABA signaling are of natural interest to the epilepsy community. Almost 15 years ago, mutations in GABRA1, coding for alpha-1 subunit of the GABA-A receptor, have been identified in familial Juvenile Myoclonic Epilepsy, but there has been relative silence around this gene since. Now, two publications highlight the other side of GABRA1 as a gene for epileptic encephalopathies, putting the GABA receptor into the spotlight again.

Continue reading

SCN1A – what’s new in 2016?

The story of SCN1A. Variants in SCN1A were first reported in association with epilepsy in 2000, when familial heterozygous SCN1A missense variants were identified in two large families with GEFS+. The phenotype was characterized by incomplete penetrance and significant variable expressivity between family members, making it clear from the beginning that the SCN1A story would not be simple. Within the next few years, we learned that SCN1A variants could cause a wide spectrum of epilepsy phenotypes, including GEFS+, Dravet syndrome, intractable childhood epilepsy with generalized tonic-clonic seizures, and, less frequently, infantile spasms and simple febrile seizures. As it became clear that SCN1A variants played an important role in genetic epilepsies, focus turned towards understanding the mechanism underlying seizure genesis, as well as identifying management and therapy options. Even after 15 years of study, our understanding of SCN1A-related epilepsy is still evolving. Keep reading to learn more about the most recent discoveries related to SCN1A. Continue reading

Explaining variants of uncertain significance – a guide for clinicians

VUSThe dreaded variant of uncertain significance. With the advent of next generation sequencing panels and exome sequencing, what used to be an occasional laboratory finding in epilepsy has now become a daily occurrence. Lab reports detailing multiple VUS findings for an individual patient have become a routine part of clinical practice. How do you, as a healthcare provider, explain the meaning and implications of VUS findings to patients and families in a way that is understandable to them?  Continue reading

TBC1D24 – what’s new in 2016?

The story of TBC1D24. As with many epilepsy genes, the TBC1D24 story increases in complexity over time. Initially described to be associated with autosomal recessive familial infantile myoclonic epilepsy by Falace and colleagues and with autosomal recessive focal epilepsy by Corbett and colleagues in 2010, pathogenic variants in TBC1D24 have since been identified as a major cause of DOORS syndrome and have also been identified in individuals with familial malignant migrating partial seizures of infancy, progressive myoclonus epilepsy, early-onset epileptic encephalopathy, and autosomal dominant and autosomal recessive non-syndromic hearing loss. However, little is known about a potential genotype-phenotype correlation of TBC1D24-related disorders, as well as the underlying mechanism. Keep reading to learn more about recent discoveries related to TBC1D24. Continue reading