Happy birthday. The Channelopathist turned three last week, i.e. exactly three years ago we started writing regular blog posts on epilepsy and genes, starting with a post on how SCN2A was rediscovered in neurodevelopmental disorders. Since we had many new subscribers last year, I thought that I could use this opportunity to write a brief post on how you can get started on Beyond The Ion Channel and how you can navigate our blog. Continue reading
Monthly Archives: April 2015
Identifying the Doose gene – SLC6A1 mutations in Myoclonic Astatic Epilepsy
Doose Syndrome. In the early 1970s, a group of children with severe childhood epilepsies was found to have comparable clinical features that consisted of quick jerks and subsequent drop attacks amongst other types of epileptic seizures. These seizures, myoclonic-astatic or myoclonic-atonic seizures, eventually became the defining feature of an epilepsy syndrome referred to as Myoclonic Astatic Epilepsy or Doose Syndrome. In the recent issue of the American Journal of Human Genetics, we report on the first true gene for Doose Syndrome. Here is the story of SLC6A1 (GAT-1). Continue reading
Epi25 – breaking the genetic sound barrier
25,000 genomes. The epilepsy community is currently preparing for the largest sequencing project in the epilepsies so far, responding to a call by the National Human Genome Research Institute (NHGRI). If funded, the Epi25 project will allow us to begin sequencing 25,000 individuals with epilepsy, helping us to achieve the next, necessary level for gene discovery in human epilepsies. Here are some of the reasons why we need Epi25 and why you should be part of it. Continue reading
Five things I learned on our trip to Leipzig
Vacation. It’s vacation time for the Channelopathist team, and we’re spending our time in Germany catching up with colleagues and friends. Our first trip took us to the former German East. Here are the five epilepsy genetics related things I learned in Leipzig. Continue reading
These are the genes we don’t need – or do we?
Rare human knockouts. Recessive disorders arise when both copies of a causative gene are affected by mutations. These diseases are thought to be a very rare occurrence, but the cumulative impact of these conditions is not known. Population genome sequencing offers the possibility to assess the spectrum and distribution of potentially causative mutations in large groups of individuals. In a recent publication from deCODE published in Nature Genetics, the authors examine the population spectrum of rare human knockouts using the unique genetic data and population structure of the Icelanders. Here is the story about potential candidate genes identified by population genetics. Continue reading