Nurse practitioners. Last month was nurses’ month – yes that’s correct, we have been upgraded from the previous nurses’ week. As the month comes to an end, I would like to briefly reflect on the role of the nurse practitioner (NP) in the epilepsy field.
Tag Archives: epilepsy genetics
Expanding the spectrum of SNAREopathies – STX1A in epilepsy and neurodevelopmental disorders
SNAREopathies. This post continues the series on SNAREopathies, a group of neurodevelopmental conditions caused by variants in genes encoding components that form the SNARE complex and regulatory proteins. As previously described, the SNARE complex is the molecular machinery driving synaptic vesicle release in the presynapse, which enables communication between neurons. Here, we expand the discussion to the second t-SNARE protein of the SNARE core complex, STX1A, and provide a brief review of the recent paper implicating STX1A in epilepsy and neurodevelopmental disorders.
Papers of the week – DEPDC5, a “female protective model” and rescued KCNT1 mutations
In final week before our EuroEPINOMICS bioinformatics workshop in Leuven people get a little busy and start reading up on all sorts of things. Accordingly, this week’s papers come from all areas of genetics and life science, including three studies in Annals of Neurology on epilepsy genetics.
GPHN deletions in IGE and mutation-dependent recessive inheritance
Living in Cologne is a little tough at the moment. Currently, we are in the middle of the Cologne Carnival, the world’s oldest carnival, which started in 1829. Until the upcoming Wednesday the entire city is one big festival. In addition to the 1 million Cologne citizens probably another million tourists will join. Due to this (positive) distraction I will write less than usual. However, I still consider this week’s publications noteworthy. Continue reading
Papers of the week – 15q11 duplications, Olig1 & Automated decision-making
A productive week in epilepsy genetics. Scientists and editors were certainly busy this week reporting novel variants and deletions as well the experimental and statistical advances for their interpretation.
A de novo GRIN2A missense mutation in early-onset epileptic encephalopathy. We and others have associated variants affecting the GRIN2A gene with a range of childhood focal epilepsy syndromes. Continue reading
Papers of the week – Encephalitis-antibodies, FAN1, Art and Parent-of-Origin Effects
Biggest surprise this week: Imprinted genes interact with non-imprinted genes frequently. But first sequencing reports, statistical frameworks for rare variants analyzes and an impressive translational result.
A novel encephalitis with seizures and the analysis of the effects of antibodies. In their study published in LANCET NEUROLOGY Petit-Pedrol and coworkers characterized serum and CSF samples for antigens in 140 patients with encephalitis, seizures or status epilepticus as well as antibodies to unknown neurophil antigens. High titres of serum and CSF GABAA receptor antibodies are reported to be associated with a severe form of encephalitis with seizures, refractory status epilepticus, or both, which could be exploited for immunotherapy with 15 patients.
A PhD in genomics – lessons learned
This is it! With finishing my PhD I have become an “adult” member of the scientific community. I grew out of a bachelor in biochemistry on transfection methods in neuronal cell lines, a research semester in Canberra with focus on B-cell immunology and master into a PhD in epilepsy genomics. I was involved in the EPICURE IGE copy number projects and recently my work changed to the analysis of rare variants in RE and IGE in the EUROepinomics framework. During this time I was involved in the identification of variants in RBFOX genes and GRIN2A as well as other risk factors which are currently in review. I share my experience and thoughts and hope they help others who are about to or have just started their thesis. The aspects reflect my personal view and some are specific for graduation in disease genomics. Continue reading
The genetics of emergent phenotypes
This article was written Kevin Mitchell and first published on his blog “Wiring The Brain” and appears here with his consent.
Why are some brain disorders so common? Schizophrenia, autism and epilepsy each affect about 1% of the world’s population, over their lifetimes. Why are the specific phenotypes associated with those conditions so frequent? More generally, why do particular phenotypes exist at all? What constrains or determines the types of phenotypes we observe, out of all the variations we could conceive of? Why does a system like the brain fail in particular ways when the genetic program is messed with? Here, I consider how the difference between “concrete” and “emergent” properties of the brain may provide an explanation, or at least a useful conceptual framework. Continue reading
The rise of the Channelopathist
Gotham City. Strange sightings have recently occurred in EuroEPINOMICS land. Scientific evildoers and exomic villains tremble in fear. The field respectfully speaks of a masked superhero roaming the floors of major genome centers. His superpowers appear beyond description. Witness the rise of the Channelopathist – and a slightly unusual blog post on epilepsy genetics. Continue reading
The RES-experiments: what results can be expected
Now the experiments to find de novo variants for epileptic encephalopathies within the Euroepinomics RES-project are well underway and first data are coming out, it is a good moment to pause and think about what results we can expect, and how these should be interpreted. For this it is very nice that recent large experiments in autism have provided so much useful data. In this post, I will explore what we can expect in experiments in which we perform whole exome sequencing in a group of patients and their parents to identify de novo variants that could be the cause of the disorder.