KCNA2. We have previously discussed KCNA2 and that pathogenic variants in this gene can lead to a spectrum of neurological phenotypes. Pathogenic KCNA2 variants were first recognized in individuals with early-onset developmental and epileptic encephalopathies and have subsequently been found also in individuals and families with hereditary spastic paraplegia, episodic ataxia, and milder epilepsies. KCNA2 encodes the Kv1.2 potassium channel, a delayed rectifier class of potassium channel that enables neuronal repolarization after an action potential. A new study by Masnada and colleagues provides clinical and functional data from 23 patients, representing the largest KCNA2 cohort reported to date. Within the KCNA2-related encephalopathy spectrum, it now seems that there may be three distinct phenotypes. Continue reading
Monthly Archives: October 2017
The rising role of synaptic transmission: the calcineurin link
Synaptic transmission. Over the last several years, pathogenic variants in multiple genes involved in synaptic transmission have been identified in early-onset epilepsies. STXBP1 and STX1B both encode components of the SNARE complex, a complicated protein complex that mediates the fusion of the plasma membrane of the presynapse and the synaptic vesicle to allow for neurotransmitter release. DNM1, encoding the dynamin-1 protein, plays an essential role in recycling synaptic vesicles back into the presynapse after neurotransmitter release. A new study by Myers and collaborators has identified several patients with de novo variants in PPP3CA, which encodes another protein involved in synaptic vesicle recycling, further highlighting the importance of synaptic transmission in the etiology of severe neurodevelopmental disorders. In the interest of full disclosure, I am also a co-author on this study. Continue reading
Guardians of the epilepsy genes
Epilepsiome, meet ClinGen. For more than a year, I have meant to write about the extension of the Epilepsiome effort to our ClinGen epilepsy working group. The overall ClinGen framework is a NIH-funded resource dedicated to building a central resource that defines the clinical relevance of genes and variants for use in precision medicine and research. Within this framework, the ClinGen Epilepsy Working group is a group of curators to apply the formal framework to epilepsy genes. Given the explosion of genetic data, curating epilepsy genes is important as a basis for precision medicine and long overdue. Within our epilepsy working group, we build upon the ClinGen framework to make it applicable to epilepsy genes. Here is what you need to know about epilepsy gene curation.