The endozepine mystery

Compound unknown. GABA is the main inhibitory neurotransmitter in the Central Nervous System and its effect is mediated through GABA receptors. Benzodiazepines are compounds that reinforce the action of GABA in the brain, which gives them antiepileptic properties. Consequently, benzodiazepines are one of the most common groups of antiepileptic drugs used to interrupt acute epileptic seizures. Interestingly, benzodiazepines have their own binding site on the GABA receptor, suggesting that they might actually mimic the effect of another, yet unknown substance that is present in the brain. The identity of this mysterious substance, the endogenous benzodiazepine or endozepine, has been one the romantic mysteries of neuroscience. Now, a recent paper in Neuron provides strong evidence that products of the DBI gene are the long-sought endozepine. Continue reading

Three things the beach taught me about science

Endless summer. I am quoting from a representative email that I received this summer from a fellow scientist in the EuroEPINOMICS consortium: “XYZ will reply to you once he is back from his holiday – IF he comes back”. A metereological anomaly had given us one of the longest and most intense summers that I can remember. No rain for roughly four weeks, a new temperature record and a heat that was so intense that the tarmac on the highways started to melt. Accordingly, the motivation in EuroEPINOMICS land to leave the beach behind and return to the office was at an all time low. We spent our summer holiday in Marielyst, Denmark and I just wanted to share some thoughts on how the world of science looks when you’re at the beach. Yes, this post is not too serious. Continue reading

Dravet Syndrome and rare variants in SCN9A

How monogenic is monogenic? Dravet Syndrome is a severe epileptic encephalopathy starting in the first year of life. More than 80% of patients have mutations or deletions in SCN1A, which makes Dravet Syndrome a relatively homogeneous genetic epilepsy. In addition to SCN1A, other genetic risk factors for Dravet Syndrome have been suggested, and current, large-scale studies including EuroEPINOMICS-RES are studying the genetic basis of the minority of Dravet patients negative for SCN1A. A recent paper in Epilepsia now suggests that a significant fraction of patients with Dravet Syndrome also carry rare variants in SCN9A in addition to the mutations in SCN1A. Is a mutation in SCN1A not sufficient to result in Dravet Syndrome, but needs additional genetic modifiers? Continue reading

A metabolic disorder masquerading as adult-onset focal epilepsy

Bella Italia. What a strange day. I am on “emergency duty” for the first day of kindergarten for our daughter. Since the kindergarten is a few meters down the road, I decided to stay home. However, as our windows are currently being replaced, I had nowhere to go. I ended up in a small cafe nearby that I hadn’t noticed before, which turned out to be authentically Italian. Between cornetto e cappuccino, I tried to catch up with some of my blogging duties. For quite some time, I had carried around a case report in the Orphanet Journal of Rare Diseases that I eventually managed to read. In this paper, the authors report on a sib pair with alpha-methylacyl-coA-racemase deficiency (AMACRD). Alpha what?? Exactly. I hadn’t heard of this before, either. However, what raised my interest was the phenotype of one of the patients – adult-onset focal epilepsy. Continue reading

Malaria, seizures and genes

Our old genome. When talking about seizures and genes, “malaria” is usually not the first thing that comes to mind. However, malaria-associated seizures are a major cause of neurological disability in Sub-Saharan Africa. Given the frequency of malaria infections on a worldwide scale, Plasmodium falciparum, the parasite causing malaria, is probably one of the most frequent causes of acute seizures. Our genome has adapted to dealing with parasites over evolutionary time and several disease-causing mutations are thought to be relatively frequent, as they also confer resistance to malaria. For malaria-associated seizures, family studies show an increase in epilepsy in relatives, suggesting that these parasite-induced epileptic seizures may also have a genetic predisposition. A recent study in Epilepsia now investigates malaria candidate polymorphisms as genetic risk factors for malaria-associated seizures. Continue reading

Invitation for the 2013 Young Researchers Meeting

This time, the desert. After the successful meeting for Young Researchers in Epileptology in Kiel last year, we would like to invite young and senior researchers in the field for the 2013 meeting, which will take place on December 14th, 2013 in Sde Boker, Israel. This year’s meeting is embedded in a small international meeting from Dec 12th-14th on epilepsy genetics with the primary aim of bringing together researchers from Israel and Palestine. As last year, we would like to extend the invitation for this year’s Young Researchers Meeting in Epileptology to all young scientists involved in the field. Don’t forget to bring water and sunscreen; we’re going to the Negev Desert. Continue reading

GRIN2A encephalopathy, epilepsy-aphasia and rolandic spikes

The GRIN2A triple. The idiopathic focal epilepsies are a group of childhood seizure disorders ranging from mild, self-limiting rolandic epilepsy to severe epileptic encephalopathies. The EEG feature of sharp-slow waves originating from the rolandic region is the unifying feature. As the rolandic region is part of the brain regions involved in speech production, acquired aphasia, i.e. loss of speech, can be a prominent feature in some patients. A strong genetic contribution in idiopathic focal epilepsies is assumed, but the genes involved have remained largely elusive. Now, three back-to-back publications in Nature Genetics highlight a prominent role of GRIN2A, probably the most counter-intuitive epilepsy gene ever found. Continue reading

Epileptic encephalopathies: de novo mutations take center stage

The de novo paradigm. De novo mutations play a significant role in many neurodevelopmental disorders including autism, intellectual disability and schizophrenia. In addition, several smaller studies have indicated a role for de novo mutations in severe epilepsies. However, unless known genes for human epilepsies are involved, findings from large-scale genetic studies are difficult to interpret. De novo mutations are also seen in unaffected individuals and only very few genes are observed more than once. Now, a publication in Nature by the Epi4K and EPGP collaborators uses a novel framework to tell pathogenic mutations from genomic noise. Their study provides very strong evidence for a predominant role of de novo mutations in Infantile Spasms and Lennox-Gastaut Syndrome. Continue reading