GABRB3, 15q dups, and CNVs from exomes

GABAergic. Let’s start out with a provocative statement. There is a single gene that may explain more cases of Lennox-Gastaut Syndrome (LGS) and Infantile Spasms (IS) than you would expect, rivalling SCN1A for the most common gene found in this group of patients. It’s a gene that you are probably aware of but that you may think to be a very rare finding. In a recent publication in Annals of Neurology, the Epi4K consortium published their recent analysis of copy number variations that were derived from exome data. Combining de novo mutations and copy number variations points to GABRB3 as a major player in LGS and IS, explaining probably more than 2% of patients. Let’s find out about the twilight zone, strategies to obtain structural variants from exomes, and the re-emergence of the 15q duplication syndrome. Continue reading

The microdeletion landscape of Genetic Generalized Epilepsy

CNV. Structural genomic variations or Copy Number Variations (CNVs) significantly contribute to the genetic architecture of many neurodevelopmental disorders. However, given the enormous variation in the human genome in healthy individuals, the precise contribution of CNVs remains poorly understood. In a recent publication in PLOS Genetics, we were able to assess the microdeletion architecture in more than 1,000 patients with Genetic Generalized Epilepsy (GGE) compared to more than 5,000 controls. We found that microdeletions occur almost twice as often in GGE patients compared to controls, an analysis that revealed both known suspects and interesting candidates. Continue reading

Beyond the Ion Channel – and back

Where do all the ion channels come from? I would like to start off with a brief commentary about the current state of gene discovery in human epilepsy. Some of our readers rightfully took offense to my previous statement that gene discovery in epilepsy it over – quite the contrary is true, and I apologize for any confusion that I may have caused. Gene discovery in epilepsy is one of the few areas of human genetics with an ongoing, rapid sequence of gene discovery with a tremendous translational potential. But we also need to reconsider the name of this blog – we are far from being beyond the ion channel. The ion channel concept has made a remarkable return in human epilepsy genetics. Let’s find out why. Continue reading

Heat at the synapse – STX1B mutations in fever-associated epilepsies

Febrile Seizures. The discovery of the genes for fever-associated epilepsies was one of the most relevant milestones in epilepsy genetics. Discovery of the underlying genes including SCN1A, SCN1B and GABRG2 was tightly linked to the development of the Genetic/Generalized Epilepsy with Febrile Seizures Plus (GEFS+) concept, describing the spectrum of epilepsy phenotypes seen in families with these mutations. Gene discovery in GEFS+, however, has slowed down in recent years, and no further causative genes had been identified for more than a decade. Now, in a recent paper in Nature Genetics, mutations in STX1B are found as a novel cause for fever-associated epilepsies. Continue reading

Have we given up on the genetics of febrile seizures?

Fever, genes, and seizures. Undoubtedly, febrile seizures are the most common epilepsy syndrome in humans. Up to 5% of children have febrile seizures. In most children, these febrile seizures are self-limiting, and there is no recurrence. Usually, no long-term treatment is required. We know from family studies and twin studies that febrile seizures have a significant genetic component. Now here are two surprising facts: first, the genetic contribution to febrile seizures is entirely unknown. Secondly, to my knowledge, the genetic contribution to the most common epilepsy syndrome in man has not been addressed in any of the current large-scale studies. Let’s review why this is the case and why we should change this. Continue reading

The top three publications in epilepsy genetics 25 years ago

Looking back. In this week’s ILAE Genetics Commission post, we would like to look 25 years back and examine the most important publication in the field in 1989, the year the Berlin wall fell. What concepts did we have back then and how did our understanding of epilepsy and genes change? Here are the top three publications of 1989. Continue reading

From unaffected to Dravet Syndrome – extreme SCN1A phenotypes in a large GEFS+ family

The two faces of SCN1A. Even though the range of phenotypes associated with mutations in SCN1A can be conceptualized as a continuum, there are usually two distinct entities in clinical practice: the severe, epileptic encephalopathy of Dravet Syndrome due to de novo mutations and the usually mild fever-related epilepsies in autosomal dominant GEFS+ families. While Dravet Syndrome can also be seen in some families with Genetic Epilepsy with Febrile Seizures Plus (GEFS+), this is a rare phenomenon; there is usually little overlap between Dravet Syndrome and GEFS+. Within the Israel Epilepsy Family Project, we came across such a family with overlapping phenotypes. This recently published large GEFS+ family probably has the widest phenotypic range reported to date. Continue reading

An inconvenient truth – segregation of monogenic variants in small families

Climate change. In the era of exome and genome sequencing, it might be worthwhile revisiting the merit of family studies in epilepsy research. Seizure disorders are known to have a highly diverse genetic architecture. When singleton studies identify a single, unique gene finding, this discovery usually does not provide much information about the potential causal role of the variant given the high degree of genomic noise. In contrast, family studies are usually considered more robust, as segregation of variants can be traced. Here is the inconvenient truth: unless the family is very large, segregation of possibly monogenic variants adds little information given the vast amount of variants present in our genomes. Continue reading

Temperature rising: 17q12 microduplications and GEFS+

GEFS+, meet CNV. Microduplications at 17q12 have been identified in various neurodevelopmental disorders and in some unaffected individuals, a pattern familiar from other structural genomic variants such as microdeletions at 16p13.11 and 15q11.2. In contrast to the corresponding microdeletion, most 17q12 microduplications are inherited. This suggests that the microduplication is a risk factor, but does not fully explain the phenotype. In a recent paper in Neurology, Hardies and collaborators look at the families of 17q12 microduplication carriers with epilepsy. And this is when they noticed something strange. Continue reading