Beyond recessive – KCNC1 mutations in progressive myoclonus epilepsy

PME. The progressive myoclonus epilepsies (PME) are a particular subtype of seizure disorders characterized by progressive myoclonus, generalized seizures and cognitive deterioration. Known causes of PME include recessive mutations in several well-known genes, but the genetic cause is unknown in a significant proportion of patients. Now, in a recent paper in Nature Genetics, de novo mutations in KCNC1 are identified as a novel cause of progressive myoclonus epilepsies. In addition to elucidating the genetic basis in a significant subset of patients with PME, the authors demonstrate that de novo mutations play an important role in a group of diseases usually thought to be recessive. Continue reading

Heat at the synapse – STX1B mutations in fever-associated epilepsies

Febrile Seizures. The discovery of the genes for fever-associated epilepsies was one of the most relevant milestones in epilepsy genetics. Discovery of the underlying genes including SCN1A, SCN1B and GABRG2 was tightly linked to the development of the Genetic/Generalized Epilepsy with Febrile Seizures Plus (GEFS+) concept, describing the spectrum of epilepsy phenotypes seen in families with these mutations. Gene discovery in GEFS+, however, has slowed down in recent years, and no further causative genes had been identified for more than a decade. Now, in a recent paper in Nature Genetics, mutations in STX1B are found as a novel cause for fever-associated epilepsies. Continue reading

From zero to one hundred in the genetics of Febrile Seizures

Finally. Only a few months ago, we wondered what happened to the genetics of Febrile Seizures, given that there was a paucity of publications in this field. Now, a recent publication in Nature Genetics presents the first well-powered genome-wide association study in Febrile Seizures in almost 2,000 patients, including a large subgroup of patients with Febrile Seizures after MMR vaccinations. The authors provide compelling evidence for common variants in known epilepsy genes. However, the strongest genetic risk for Febrile Seizures is in a known disease gene that nobody expected. Continue reading