The Epilepsy Genetics Initiative – novel diagnoses through exome re-analysis

The negative exome. Despite writing a lot about the power of next generation sequencing technologies to provide a genetic diagnosis in individuals with severe epilepsies, it is important to remember that most exome tests performed in a diagnostic setting are negative. Even the most optimistic studies do not find a diagnostic yield that exceeds 40%. However, what can be done about the 60-70% of patients who had undergone exome sequencing, the current gold-standard diagnostic testing, but have received a negative test result? A systematic re-analysis after 12-24 months is currently considered one possibility to make sense of existing exome data. In a current publication, the Epilepsy Genetics Initiative (EGI) reports their results of a systematic research-based re-analysis in 166 individuals with epilepsy. In eight individuals, a novel diagnosis could be achieved, including novel genes not known at the time of the initial report and novel mechanisms such as alternative exons. With a diagnostic rate of 6%, this study provides a unique benchmark of what can be expected when exomes initially come back as negative. Continue reading

The rising role of synaptic transmission: the calcineurin link

Synaptic transmission. Over the last several years, pathogenic variants in multiple genes involved in synaptic transmission have been identified in early-onset epilepsies. STXBP1 and STX1B both encode components of the SNARE complex, a complicated protein complex that mediates the fusion of the plasma membrane of the presynapse and the synaptic vesicle to allow for neurotransmitter release. DNM1, encoding the dynamin-1 protein, plays an essential role in recycling synaptic vesicles back into the presynapse after neurotransmitter release. A new study by Myers and collaborators has identified several patients with de novo variants in PPP3CA, which encodes another protein involved in synaptic vesicle recycling, further highlighting the importance of synaptic transmission in the etiology of severe neurodevelopmental disorders. In the interest of full disclosure, I am also a co-author on this study. Continue reading