The Epi25 study. On August 1, the Epi25 study was published in the American Journal of Human Genetics. Epi25 is the major, international effort to understand the genetics of common and rare epilepsies through exome sequencing, and our current study now presents the first results on what we can see if we look at the genetics of the epilepsies in thousands of individuals, including more than 9,000 persons with epilepsy and 8,000 controls. The Epi25 study finds that individuals with epilepsy carry more ultra-rare, deleterious variants than controls, especially in known or presumed candidate genes. This is a significant finding that tells us about the inner genetic architecture of the epilepsies beyond the role of monogenic causes. However, as with many previous studies at this scale, the first publication merely scratches the surface and provides an enormous amount of data for further studies. Here is a brief summary of the Epi25 study and some of the most prominent genes in the epilepsies that were completely unknown previously. Continue reading
Category Archives: 2019
How common is rare? A population-based study into genetic childhood epilepsies
What is the most common monogenic cause of epilepsy? This is a question we often ask students and trainees who rotate with us in our Epilepsy Neurogenetics Clinic. This is not meant to be a trick question, and the answer we previously sought was based largely on published studies, estimates of population frequency of individual genetic epilepsies, and our own clinical experience. And we are sometimes surprised by how skewed such a view can be. Now, a new study by Symonds and colleagues answers the question of population-incidence of common genetic epilepsy syndromes through a prospective population-based cohort study in Scotland. This study provides important data on risk factors that are more likely to predict a genetic diagnosis in infants and young children with seizures and answers the question of which genetic epilepsy is most common. I was initially surprised, but really not surprised at all, by the answer. Continue reading
Deciphering the phenotypic code – AP2M1 in epileptic encephalopathies
Synaptic. Identifying the genetic changes underlying severe childhood epilepsies is one of the key steps for predicting outcomes and developing better treatments. However, while our ability to analyze genetic data at scale allows us to simultaneously query tens of thousands of exomes or genomes, our understanding of large phenotypic data has been limited. This limitation, the “phenotypic bottleneck”, is often frustrating, especially as many developmental and epileptic encephalopathies present with unusual and very complex phenotypic features that we would like to better understand for our clinical decision making. The lack of concepts and methods to handle large amounts of phenotypic data has been one of the main contributing factors to this shortcoming. In a new publication in the American Journal of Human Genetics, we aim to overcome this problem by identifying a measurement for phenotypic similarity, using a computational approach to determine how similar patients are to each other based on Human Phenotype Ontology terms. When combined with exome sequencing data, we identified AP2M1, a gene that caused such a similar phenotype that it stood out from the remainder of the cohort. It is the first epilepsy-associated gene identified not from a genetic association, but from phenotypic similarity. Continue reading
ICK, Juvenile Myoclonic Epilepsy, and the burden of proof
Pathogenic or benign. In 2018, ICK, coding for Intestinal-Cell Kinase, was reported as a novel causative gene in Juvenile Myoclonic Epilepsy (JME) in the New England Journal of Medicine. JME is one of the most common epilepsy syndromes, and the authors suggested that up to 7% of JME in their study may be explained by pathogenic variants in this gene, suggesting that, if applicable to all individuals with JME, it may provide a genetic diagnosis for an expected 500,000 individuals worldwide. In a reply to the initial study, the investigators of the EuroEPINOMICS-CoGIE, EpiPGX, Epi4K, and EPGP Consortia attempted to replicate these initial findings, but could not find any evidence in for a role of ICK in JME and indicated that the initial results may have arisen by chance and due to methodological issues. Given the potential implications for future research and therapy development in a relatively common epilepsy, the controversial ICK story is a good example to highlight why it is important to revisit the current consensus on when we consider a candidate a true disease gene and why a category mistake confusing variant pathogenicity for gene validity may result in false positive findings. Continue reading
The Epilepsy Genetics Initiative – novel diagnoses through exome re-analysis
The negative exome. Despite writing a lot about the power of next generation sequencing technologies to provide a genetic diagnosis in individuals with severe epilepsies, it is important to remember that most exome tests performed in a diagnostic setting are negative. Even the most optimistic studies do not find a diagnostic yield that exceeds 40%. However, what can be done about the 60-70% of patients who had undergone exome sequencing, the current gold-standard diagnostic testing, but have received a negative test result? A systematic re-analysis after 12-24 months is currently considered one possibility to make sense of existing exome data. In a current publication, the Epilepsy Genetics Initiative (EGI) reports their results of a systematic research-based re-analysis in 166 individuals with epilepsy. In eight individuals, a novel diagnosis could be achieved, including novel genes not known at the time of the initial report and novel mechanisms such as alternative exons. With a diagnostic rate of 6%, this study provides a unique benchmark of what can be expected when exomes initially come back as negative. Continue reading
V is for valine – VARS mutations in epileptic encephalopathy
Transfer RNAs. A critical step in translating a cDNA into proteins involves transfer RNAs (tRNAs) that deliver a specific amino acid to the ribosome based on a specific codon in the messenger RNA. Thereby, tRNAs establish the physical link between the mRNA and the amino acid sequence of the growing protein, an essential cellular function. In order for tRNAs to be loaded with the appropriate amino acids, the organism has developed enzymes specific for the individual amino acids that are referred to as tRNA ligases or, more precisely, aminoacyl tRNA synthetases (aaRS). Despite the ubiquitous role of aaRS in the cell, pathogenic variants in genes coding for specific aaRS result primarily in neurological phenotypes, ranging from peripheral neuropathy to early-onset epileptic encephalopathies. In two recent back-to-back publications, bi-allelic pathogenic variants in VARS are described as a novel cause for epileptic encephalopathy, adding VARS to the list of aaRS genes linked to human disease and solving an almost decade-old mystery. Continue reading
Heat at the synapse revisited: an STX1B update
Heat at the synapse revisited. STX1B encodes syntaxin 1B, one of three proteins – along with SNAP25 and synaptobrevin – that form the SNARE complex. The SNARE complex is part of the protein machinery responsible for Ca2+-dependent fusion of the presynaptic neuronal cell membrane with the synaptic vesicle to enable neurotransmitter exocytosis. STXBP1 also plays an important role in this process, as the syntaxin binding protein encoded by STXBP1 interacts with the SNARE complex via binding to syntaxin. While pathogenic variants in STXBP1 are a well-established cause of early-onset epilepsies and related neurodevelopmental disorders, after the initial description of STX1B-related epilepsies in 2014, very little more was heard regarding STX1B in the intervening four years. Now, we contributed patients to a publication in Neurology, which provides an update regarding the clinical and genetic landscape of STX1B-related epilepsies. Continue reading
Cost-effectiveness of genetic testing in patients with epilepsy: which test is the right test?
Which test is the right test? In clinical practice, determining an appropriate genetic testing strategy in the evaluation of a patient with unexplained epilepsy is often inconsistent and left to the treating provider, given the lack of evidence-based guidelines. Oftentimes external factors, such as insurance hurdles, dictate the genetic testing that can be ordered. A recent meta-analysis in Neurology attempts to answer the question about which genetic test is most cost-effective in patients with epilepsy, which may aid in the decision making when considering a genetic evaluation of a person with epilepsy. Continue reading
Constrained coding regions and genetic causes for epilepsy that we might have missed
Genetic architecture. Our reference dataset for genetic variation in humans has become so large that we can increasingly ask the question whether the distribution of genetic variants tells us something about genes and regions within genes without knowing anything about what these genes actually do. For example, it is well established that genes with fewer protein-truncating variants than expected are much more likely to be causative genes for epilepsy and neurodevelopmental disorders than genes that have an average number of these variants. A recent publication in Nature Genetics takes this approach one step further by looking at specific regions within genes rather than entire genes, a somewhat interesting approach that the authors introduce by discussing bullet damage to airplanes in World War II. Continue reading
The second ILAE GWAS or why 30% of genetic generalized epilepsy is explained
Genome-wide association. While most of the neurogenetics community was focused on exome sequencing and the discovery of novel monogenic forms of epilepsy in the last few years, something quite remarkable had happened in the background. Common variants and genome-wide association studies have made a remarkable comeback. The ILAE Consortium for Complex Epilepsy had slowly worked on increasing sample sizes over time, and the second analysis of common variants in common epilepsies was published in late 2018. Sample sizes have almost doubled since the first study in 2014, and as a result, the number of genome-wide significant loci has tripled. However, the most intriguing finding was something that completely caught me by surprise – more than 30% of the heritability of the genetic generalized epilepsies is explained through common variants, approaching the numbers we see in epileptic encephalopathies explained by monogenic causes. This is one more reason to discuss the recent ILAE GWAS in more detail. Continue reading