EFHC1 – retiring an epilepsy gene

The era of gene retirement. As of 2015, the list of epilepsy genes has shrunk by one. EFHC1, a gene initially proposed to be a monogenic cause of Juvenile Myoclonic Epilepsy, is no longer an epilepsy gene. A recent study in Epilepsia finds that EFHC1 variants initially thought to be pathogenic are found in unaffected controls of the same ancestry. Follow us on one of the most perplexing journeys that modern day neurogenetics has to offer, and the retirement of the first epilepsy gene. Continue reading

A genetic counselor’s wish list for epilepsy genetics in 2015

Mt. Rainier. After our recent posts about the 2014 AES in Seattle, we received an email from Beth in Boston, highlighting some of the issues that genetic counselor face in epilepsy genetics when dealing with next gen sequencing data. Beth drew up a wish list for 2015 and asked us for comments. Here is a brief discussion between Beth and me on how high throughput epilepsy genetics sometimes comes to grinding halt in clinical practice. Continue reading

Publications of the week – SRP9, Nebulin, and Kuf’s disease

Issue 2/2015. For the second issue of our publications of the week in 2015, we have selected recent publications on the genetics of Febrile Seizures, the complexities of interpreting variants in large genes and functional studies on progressive myoclonus epilepsies due to mutations in SCARB2 and CTSF. Continue reading

Dynamin 1, the synapse, and why epilepsy gene discovery is now officially over

E2 consortium. Infantile Spasms and Lennox-Gastaut Syndrome are two epilepsy syndromes with a strong genetic component. De novo mutations play an important role in genetic epilepsies. However, given the overall mutational noise in the human genome, telling causative genes from innocent bystanders is difficult. In the largest and most comprehensive analysis so far, our E2 consortium just published a joint analysis of 356 patient-parent trios, which were analyzed by exome sequencing. In addition to implicating DNM1, GABBR2, FASN, and RYR3, this publication sends a clear message: the age of gene discovery in epilepsy is over – from now on, genes will find themselves. Let me tell you what I mean by this. Continue reading

The ARX problem – how an epilepsy gene escapes exome sequencing

Silence. You might wonder why you hear very little about ARX in exome studies these days. The X-chromosomal aristaless related homeobox gene was one of the first genes for epilepsies and brain malformations to be discovered. Mutations in ARX can be identified in male patients with a variety of neurodevelopmental disorders including idiopathic West Syndrome – accordingly, it’s on the differential list for patients with Infantile Spasms without a known cause. Let me tell you about the problems that the ARX gene poses for exome sequencing. Continue reading

Three things you didn’t know about epilepsy and genes

Fall colors. Just a brief summary of how this post originated. Eckernförde is a small city north of Kiel and the weekly Sunday destination of my daughter and me because of the wave pool.  This past Sunday, daylight saving and the fact that she didn’t like her dinner had confused the little girl, and we had been awake since 4AM. As a consequence, she fell asleep on the way, and I kept driving to let her sleep. We made it as far as Haddeby, and I used this time to mentally put a post together that I had been planning for some time. These are the three things that are often misunderstood with regards to epilepsy and genes. Continue reading

ST3GAL3 and exome sequencing in autosomal recessive West Syndrome

Autosomal recessive West Syndrome. Exome sequencing and other high-throughput sequencing technologies work best in the identification of recessive disorders. While many cases of West Syndrome are thought to be the result of de novo mutations, recessive inheritance is seen in a subset of patients. In a recent paper in Epilepsia, Edvardson and colleagues now report mutations in ST3GAL3 in a consanguineous Palestinian family with four affected individuals with West Syndrome. This report takes us deep into the chromosomal anatomy of the linkage region, raising the question at what point we can claim that a gene is found. Continue reading