Publications of the week – Dravet Syndrome, TBC1D24, and CSTB

Issue 6/2015. Publications from the most recent issue of Epilepsia are very prominent in this week’s selection of publications. We discuss the frequency of Dravet Syndrome, a novel family with a TBC1D24 mutation, and the role of Cystatin B (CSTB) in Juvenile Myoclonic Epilepsy. Continue reading

Flickering lights, endophenotypes, and EEG genetics – CHD2 in photosensitivity

Heritable. Many epilepsy syndromes have signature EEG traits, and these traits are thought to have a strong genetic component. The endophenotype concept suggests that using these epilepsy-related traits in genetic studies will facilitate gene discovery, a concept that has failed us so far in epilepsy research, unfortunately. Now, in a recent publication in Brain, we were able to demonstrate that variants in CHD2 predispose to photosensitivity, an abnormal cortical response to flickering light. Finally, after several decades of persisting difficulties, there is some progress in the field of EEG genetics. Continue reading

USP9X, Ubiquitin, and the PRICKLE interactome

PRICKLE. There are some genes implicated in human epilepsies that we have a hard time making sense of. PRICKLE1, implicated in a recessive progressive myoclonus epilepsy, is one of these genes. In a recent publication in PLoS Genetics, the interactome of the enigmatic PRICKLE proteins is explored. The authors rediscover an almost forgotten gene implicated in intellectual disability. Continue reading

The two faces of KCNA2 – a novel epileptic encephalopathy

Delayed rectifier. The discovery of de novo mutations in ion channel genes as a cause for genetic epilepsies continues. In a recent publication in Nature Genetics, we have identified de novo mutations in KCNA2 as a novel cause of epileptic encephalopathies associated with ataxia. Interestingly, even within a single gene, two different phenotypes seem to be emerging. Continue reading

TLR3 and the genetic predisposition to herpes encephalitis

Seizures with fever. Most times when we discussed seizures in the setting of fever on our blog, we either referred to simple Febrile Seizures or genetic syndromes such as Dravet Syndrome, which characteristically present with fever-associated seizures. However, if a child or an adult presents with a first seizure in the setting of a febrile illness and shows recurrent seizures or does not get back to baseline quickly, we are usually concerned about infections of the brain. Herpes simplex virus (HSV) encephalitis is one of the more common infections, which may result in significant impairment if not treated rapidly. A recent publication in Neurology reminds us of the genetic susceptibility of HSV encephalitis and suggests that predisposing genetic alterations can be found in an appreciable number of patients. Continue reading

CHD2 myoclonic encephalopathy – delineating a novel disease

CHD2. In 2013, mutations in CHD2 were reported in various publications including two major studies on epileptic encephalopathies, reinforcing the notion that de novo mutations in this gene are a recurrent cause of epileptic encephalopathies. However, large-scale studies often cannot fully appreciate the complete phenotype of the patient behind the gene finding. Therefore, it is difficult to appreciate similarities between patients and assess whether phenotypes constitute a recognizable entity. In a recent publication in Neurology, the phenotype of CHD2 encephalopathy is explored in detail – it represents a distinct, recognizable disease entity. Continue reading

EFHC1 – retiring an epilepsy gene

The era of gene retirement. As of 2015, the list of epilepsy genes has shrunk by one. EFHC1, a gene initially proposed to be a monogenic cause of Juvenile Myoclonic Epilepsy, is no longer an epilepsy gene. A recent study in Epilepsia finds that EFHC1 variants initially thought to be pathogenic are found in unaffected controls of the same ancestry. Follow us on one of the most perplexing journeys that modern day neurogenetics has to offer, and the retirement of the first epilepsy gene. Continue reading

Speech dyspraxia and dysarthria – the other side of GRIN2A

GRIN2A. Mutations in several genes coding for NMDA receptor subunits have recently been found in various neurodevelopmental disorders. Amongst the different genes, GRIN2A is one of the most prominent ones and mutations in this gene are found in patients with epilepsy-aphasia syndromes. So far, we have mainly looked at GRIN2A from the epilepsy side. In a recent publication in Neurology, Turner and collaborators now examine the speech phenotype in GRIN2A families. They examine two families where speech issues are a prominent phenotypic feature. It turns out that GRIN2A mutations may predispose to a distinct speech phenotype. Continue reading

Publications of the week – CNTNAP2, DEPDC5, and autism whole-genome sequencing

Issue 4/2015. Trying to keep up with the publications of the week in the field, we have selected three manuscripts this week, which challenge some of our well-established beliefs. It’s about an autism gene losing its statistical support, a familial epilepsy gene rediscovered in focal cortical dysplasia, and the surprises of whole-genome sequencing in familial autism. Continue reading