ARX – a 2017 Update

Aristaless. When you look at the genes for neurodevelopmental disorders identified in modern-day exome studies, one gene is notably absent: ARX. The X-chromosomal aristaless related homeobox gene was one of the first genes for epilepsies and brain malformations to be discovered. Pathogenic variants in ARX can be identified in male patients with a variety of neurodevelopmental disorders including idiopathic West Syndrome – accordingly, ARX is on the differential list for patients with intractable infantile spasms without a known cause. One of the reasons why we hear so little about ARX is the fact that this gene is poorly covered in exomes. Furthermore, one of the major disease-causing variants is a repeat expansion that cannot be assessed through exome studies at all. Here is a brief summary of what we know about ARX in 2017. Continue reading

How to find recessive disease genes for epileptic encephalopathies

The E2 story continues. There has been major progress in identifying the role of de novo mutations in infantile spasms and other epileptic encephalopathies. Over the last two years, more than 20 new genes for epileptic encephalopathies were discovered and we have good evidence suggesting that de novo mutations play a major role in these disorders. Moreover, we have gotten a good sense on how complicated it can be to call a de novo mutation pathogenic given the flood of rare genetic variants in the human genome. However, de novo mutations are not what we think about clinically when assessing a patient with new-onset epileptic encephalopathy. In a clinical setting, we are often concerned about underlying metabolic disorders, many of which are recessive. Accordingly, we felt that the next task of the E2 consortium was to assess the role of inherited variants in epileptic encephalopathies. Just to tell you in advance, it is not as easy as it sounds.

Continue reading

The ARX problem – how an epilepsy gene escapes exome sequencing

Silence. You might wonder why you hear very little about ARX in exome studies these days. The X-chromosomal aristaless related homeobox gene was one of the first genes for epilepsies and brain malformations to be discovered. Mutations in ARX can be identified in male patients with a variety of neurodevelopmental disorders including idiopathic West Syndrome – accordingly, it’s on the differential list for patients with Infantile Spasms without a known cause. Let me tell you about the problems that the ARX gene poses for exome sequencing. Continue reading

The OMIM epileptic encephalopathy genes – a 2014 review

EIEE1-19. Online Mendelian Inheritance in Man (OMIM) is one of the most frequently accessed online databases for information on genetic disorders. Genes for epileptic encephalopathies are organized within a phenotypic series entitled Early Infantile Epileptic Encephalopathy (EIEE). The EIEE phenotypic series currently lists 19 genes (EIEE1-19). Let’s review the evidence for these genes as of 2014. Continue reading

New epilepsy genes involved in epigenetics – a survey

A growing number of genes have been identified to be causative for genetic forms of epilepsy, which are neither ion channels, receptors nor other classical epilepsy genes but epigenetic players. The epigenetic enzymes and effector proteins described to be mutated in inherited genetic epilepsies as well as epileptic encephalopathies, intellectual disability syndromes and autism spectrum disorders with associated severe or occasional seizure phenotype are of various function. Since this function never seems to be sufficiently discussed in the respective publications and little is to be found on how these genes may be linked to the phenotype, here comes a little overview summarizing how epigenetics is contributing not only to symptomatic focal epilepsy but may also help to explain the phenotypic heterogeneity of genetic epilepsies.

Continue reading

G proteins, GNAO1 mutations and Ohtahara Syndrome

G proteins. Intracellular signaling in neurons can occur through various mechanisms including so-called second messengers. G proteins constitute an important part of the signaling cascade that translates the signal from membrane-bound receptors. On neurons, GABA-B receptors or alpha-2 adrenergic receptors use signal transduction through the so-called G alpha-o proteins, which are particularly abundant in the CNS and encoded by the GNAO1 gene. Now a recent paper in the American Journal of Human Genetics describes de novo mutations in Ohtahara Syndrome and movement disorders. Continue reading

Less is more – gene identification in epileptic encephalopathies through targeted resequencing

Exome no more. Over the last 15 months, we have repeatedly discussed how exome sequencing or genome sequencing is applied to neurodevelopmental disorders in order to discover new candidate genes and to assess the role of known candidate genes. We have also wondered sometimes whether exome sequencing is the most straightforward approach. Now – outpacing the two large international consortia using exome sequencing in epileptic encephalopathies – a recent study in Nature Genetics uses a different approach to uncover the genetic basis in 10% of patients with epileptic encephalopathies.  Targeted resequencing or gene panel analysis is a hybrid technology between candidate gene sequencing and next generation sequencing and focuses only on a subset of candidate genes. While their study provides a comprehensive overview over the genetics of rare epilepsy syndromes, it raises the question whether the era of large-scale exome sequencing is coming to a natural end. Continue reading