The years of our fathers: paternal age and the rate of de novo mutations

Aging fathers. An increase in risk of aneuploidies, i.e. chromosomal aberrations such as Trisomy 21, is well established with maternal age.  Whether the paternal age also increases the risk for disorders in the offspring had long been disputed. However, a connection between paternal age and autism has been found in recent years. Now a recent study in Nature finds a surprisingly strong correlation on the genetic level… Continue reading

Epilepsy genes in noncoding RNA

Genome vs. exome sequencing. Can non-coding regions be skipped in the search for disease-causing variants? Is it worth to pay a higher price for sequencing the whole genome?
The sequencing company Complete Genomics (CGI) is already sounding the death knell for exome sequencing, arguing that the protein-coding genes cover only ~1% of the genome, while many loci identified by GWAS lie in the non-coding regions. CGI maintains that the price difference between whole-genome (WGS) and exome sequencing (ES) has become “less of an issue”. With declining sequencing prices, this will certainly be the case in the future – however, when multiplying the current added costs for WGS with the large numbers of cases and controls required for finding new hits in complex diseases, the proponents of ES have strong arguments. Will WGS explain more than the 10% expected for exome sequencing? Continue reading