E2 consortium. Infantile Spasms and Lennox-Gastaut Syndrome are two epilepsy syndromes with a strong genetic component. De novo mutations play an important role in genetic epilepsies. However, given the overall mutational noise in the human genome, telling causative genes from innocent bystanders is difficult. In the largest and most comprehensive analysis so far, our E2 consortium just published a joint analysis of 356 patient-parent trios, which were analyzed by exome sequencing. In addition to implicating DNM1, GABBR2, FASN, and RYR3, this publication sends a clear message: the age of gene discovery in epilepsy is over – from now on, genes will find themselves. Let me tell you what I mean by this. Continue reading
Tag Archives: mutation intolerant
Mutation intolerance – why some genes withstand mutations and others don’t
The river of genetic variants. The era of high-throughput sequencing has given us several unexpected insights into the human genome. One of these insights is the observation that mutations or variations can occur in parts of our genome without any major consequences. Every individual is a “knockout” for at least two genes in the human genome. This means that in every individual, both copies of a single gene are disrupted through mutations or small deletions or duplications. In addition, there are dozens, if not hundreds, of genes with disruptive mutations that affect only a single copy of the gene. Similar mutations in specific disease-associated genes, however, will invariably result in an early onset genetic disorder. This comparison already shows that the genes in the human genome differ with respect to the amount of disruptive genetic variation they can tolerate. A recent study in PLOS Genetics now tries to catalogue the genes in the human genome by assessing their mutation intolerance based on the genetic variation seen in large-scale exome datasets. Many genes for neurodevelopmental disorders are highly intolerant to mutations. Furthermore, some genes for monogenic epilepsies show surprising results in this assessment. Continue reading