FIRES, NORSE, Omics, and Urgency

FIRES. Febrile infection-related epilepsy syndrome (FIRES) is characterized by refractory status epilepticus following a non-specific febrile illness. FIRES is a subtype of New Onset Refractory Status Epilepticus (NORSE) without a clear cause in individuals without active epilepsy. The cause of FIRES and NORSE is unclear, and it is not even clear whether both conditions share a joint mechanism or represent distinct entities. In a recent publication, we contributed to a review of the state-of-the-art in NORSE and FIRES research and suggested a very first step to understand these conditions better – standardized biosamples. This blog post is about the intersection of omics and urgency, long-term strategies and scientific principles.

Continue reading

The genetics of FIRES and status epilepticus in 2023

FIRES. As a rare and severe epilepsy syndrome, febrile-infection related epilepsy syndrome (FIRES) is characterized by refractory status epilepticus (RSE) preceded by a febrile illness and often leads to prolonged hospitalizations, cognitive impairment, and intractable epilepsy. There are currently no clear causative etiologies identified in FIRES, and the underlying genetic architecture remains elusive. Here is a brief summary of our recent manuscript on the genetics of FIRES and refractory status epilepticus. This is what we learned about one of the most enigmatic conditions in child neurology.

Continue reading

Have we given up on the genetics of febrile seizures?

Fever, genes, and seizures. Undoubtedly, febrile seizures are the most common epilepsy syndrome in humans. Up to 5% of children have febrile seizures. In most children, these febrile seizures are self-limiting, and there is no recurrence. Usually, no long-term treatment is required. We know from family studies and twin studies that febrile seizures have a significant genetic component. Now here are two surprising facts: first, the genetic contribution to febrile seizures is entirely unknown. Secondly, to my knowledge, the genetic contribution to the most common epilepsy syndrome in man has not been addressed in any of the current large-scale studies. Let’s review why this is the case and why we should change this. Continue reading

GABRA1 and STXBP1 as novel genes for Dravet Syndrome

Beyond SCN1A. Dravet Syndrome is a severe fever-associated epileptic encephalopathy. While the large majority of patients with Dravet Syndrome carry mutations in the SCN1A gene, the genetic basis is unknown in up to 20% of patients. Some female patients with Dravet-like epilepsies have mutations in PCDH19, but other than this, no additional major gene for typical Dravet Syndrome is known. In a recent paper in Neurology, de novo mutations in GABRA1 and STXBP1 are identified as novel causes for Dravet Syndrome. In addition, several SCN1A-negative patients were shown to have mutations in SCN1A that were initially missed. Continue reading