SCN1A and Dravet Syndrome – your questions for the Channelopathist

Comments. After posting our 2015 update on what you should know about SCN1A, we received a number of comments on our blog and by email. We usually have the policy to respond to every comment individually. However, after we had realized that we had fallen behind with a few replies for several weeks, we felt that it might be worthwhile rephrasing some of the questions as general topics to write about, especially since many of your questions raised interesting points. Here are the questions that you asked regarding SCN1A and Dravet Syndrome. Continue reading

SCN1A – this is what you should know in 2015

2015 update. Our updates on SCN1A mutations and Dravet Syndrome are amongst our most frequently read posts. Therefore, following the tradition of annual reviews that we started last year, we thought that a quick update on SCN1A would be timely again, building on our previous 2014 update. These are the five things about SCN1A that you should know in 2015. Continue reading

Discrepancies in interpretation – when can exomes speak from themselves?

Interpretation. There is huge promise in discovering the genetic basis of neurodevelopmental disorders using exome sequencing, but it is often not clear how ambiguous results are communicated to families. In a recent publication in Clinical Genetics, the authors try to understand what happens to exome results as they land on the clinician’s desk – and leave us with the conclusion that diagnostic exome sequencing when reviewed in a clinical setting may have a false positive rate of up to 20% with 5% of false negatives. Continue reading

Launching the Epilepsy Genetics Initiative – Go EGI!

Launch. This week, the Epilepsy Genetics Initiative (EGI) was launched. EGI was founded by Citizens United for Research in Epilepsy (CURE) and represents a large database for diagnostic and research exomes that will guarantee regular re-analysis of exome data, which is particularly relevant for the large number of exomes that we think are negative. Here is a brief blog post why all exomes should eventually find their way into EGI. Continue reading

How to get started in epilepsy genetics – The Channelopathist’s third birthday

Happy birthday. The Channelopathist turned three last week, i.e. exactly three years ago we started writing regular blog posts on epilepsy and genes, starting with a post on how SCN2A was rediscovered in neurodevelopmental disorders. Since we had many new subscribers last year, I thought that I could use this opportunity to write a brief post on how you can get started on Beyond The Ion Channel and how you can navigate our blog. Continue reading

Identifying the Doose gene – SLC6A1 mutations in Myoclonic Astatic Epilepsy

Doose Syndrome. In the early 1970s, a group of children with severe childhood epilepsies was found to have comparable clinical features that consisted of quick jerks and subsequent drop attacks amongst other types of epileptic seizures. These seizures, myoclonic-astatic or myoclonic-atonic seizures, eventually became the defining feature of an epilepsy syndrome referred to as Myoclonic Astatic Epilepsy or Doose Syndrome. In the recent issue of the American Journal of Human Genetics, we report on the first true gene for Doose Syndrome. Here is the story of SLC6A1 (GAT-1). Continue reading

Cause or coincidence – recessive SCN1A variants in Dravet Syndrome

Recessive epilepsies. Dravet Syndrome is one of the most prominent genetic epilepsies and presents in the first year of life with prolonged fever-associated seizures. Haploinsufficiency of SCN1A, either through mutations or deletions, is the major cause of Dravet Syndrome. In a recent publication in the European Journal of Pediatric Neurology, two families with recessive Dravet Syndrome and biallelic SCN1A variants are reported. Let’s have a look at how to interpret these findings. Continue reading

Publications of the week – Dravet Syndrome, TBC1D24, and CSTB

Issue 6/2015. Publications from the most recent issue of Epilepsia are very prominent in this week’s selection of publications. We discuss the frequency of Dravet Syndrome, a novel family with a TBC1D24 mutation, and the role of Cystatin B (CSTB) in Juvenile Myoclonic Epilepsy. Continue reading

Flickering lights, endophenotypes, and EEG genetics – CHD2 in photosensitivity

Heritable. Many epilepsy syndromes have signature EEG traits, and these traits are thought to have a strong genetic component. The endophenotype concept suggests that using these epilepsy-related traits in genetic studies will facilitate gene discovery, a concept that has failed us so far in epilepsy research, unfortunately. Now, in a recent publication in Brain, we were able to demonstrate that variants in CHD2 predispose to photosensitivity, an abnormal cortical response to flickering light. Finally, after several decades of persisting difficulties, there is some progress in the field of EEG genetics. Continue reading

The two faces of KCNA2 – a novel epileptic encephalopathy

Delayed rectifier. The discovery of de novo mutations in ion channel genes as a cause for genetic epilepsies continues. In a recent publication in Nature Genetics, we have identified de novo mutations in KCNA2 as a novel cause of epileptic encephalopathies associated with ataxia. Interestingly, even within a single gene, two different phenotypes seem to be emerging. Continue reading