Reelin, migration and an unexpected gene for lateral temporal lobe epilepsy

Reeler. In 1951, the geneticist D.S. Falconer identified a spontaneous mouse mutant with an abnormal, “reeling” gait. This mouse, aptly called reeler, was later found to have developmental abnormalities of the cerebellum and, most prominently, an inversion of the layers of the cortex. At this point, interest was piqued to identify the underlying gene, which was eventually pinpointed in 1995. Reelin, the culprit gene, was found to be a secreted protein of cortical support cells and was subsequently found to be the cause of human lissencephaly with cerebellar hypoplasia (LCH). In a recent study in the American Journal of Human Genetics, reelin takes on a new role as a novel gene for a familial form of lateral temporal lobe epilepsy. Continue reading

C6orf70, neuronal migration and periventricular heterotopia

Radial migration. The fact that neurons find their place in the cortex during development is nothing short of a miracle. Many neurons originate in the subventricular zone, i.e. the area lining the ventricles. During brain development, these neurons subsequently climb outwards to their final positions using radial glia cells as scaffolds. If this delicate process is disturbed, neurons may be misplaced. Periventricular nodular heterotopia (PVNH) is a condition in which defects in neuronal migration result in ectopic neuronal nodules lining the ventricles. These nodules may result in a broad range of epilepsies, ranging from mild seizure disorders to intractable epilepsy with intellectual disability. Many cases of PVNH are assumed to be genetic, and FLNA and ARFGEF2 as known causative genes. However, the cause remains unknown in a significant number of patients. In a recent paper in Brain, C6orf70 is identified as a new candidate for PVNH using a clever combination of array CGH and exome sequencing. Continue reading