IRF2BPL in progressive myoclonus epilepsy – an unexpected phenotypic discovery

PME. The progressive myoclonus epilepsies (PME) are an important and distinct subgroup of genetic epilepsies. In contrast to many genetic epilepsies with a neurodevelopmental trajectory, the PMEs often follow a neurodegenerative course, which is characterized by a worsening myoclonus over time and frequently associated with cognitive decline. In a recent publication, protein-truncating variants in the intronless gene IRF2BPL were identified in two individuals with PME. However, in contrast to the relatively distinct nature of most other PME, the clinical presentation in IRF2BPL-related disorders is part of a phenotypic spectrum and emerges as one of the most usual phenotypic discoveries in the genetic epilepsies to date.

Continue reading

Beyond recessive – KCNC1 mutations in progressive myoclonus epilepsy

PME. The progressive myoclonus epilepsies (PME) are a particular subtype of seizure disorders characterized by progressive myoclonus, generalized seizures and cognitive deterioration. Known causes of PME include recessive mutations in several well-known genes, but the genetic cause is unknown in a significant proportion of patients. Now, in a recent paper in Nature Genetics, de novo mutations in KCNC1 are identified as a novel cause of progressive myoclonus epilepsies. In addition to elucidating the genetic basis in a significant subset of patients with PME, the authors demonstrate that de novo mutations play an important role in a group of diseases usually thought to be recessive. Continue reading