GRIA genes. This is the first time we are describing GRIA genes on this blog. GRIA genes, which include GRIA1, GRIA2, GRIA3, and GRIA4, encode the AMPA receptor, one of the two key channels in the process of glutamate neurotransmission. While GRIN genes, which encode the NMDA receptor, have been characterized much more extensively in the literature, GRIAs remain relatively under-characterized, even though their protein products are involved in a similar molecular process in the post-synapse in modulating excitatory synaptic transmission. Here, we provide a brief overview of the genetic and phenotypic range of GRIA-related disorders.
Tag Archives: neurodevelopmental disorders
The spectrum of de novo variants in 30,000 individuals with neurodevelopmental disorders
NDD. Trio-exome sequencing is the gold standard to identify the underlying genetic basis in individuals with neurodevelopmental disorders. De novo variants account for the vast majority of causative genetic findings once a diagnosis is made, but the overall genetic landscape is very heterogeneous, with few genes explaining more than 1% of the genetic morbidity. As the largest study of its kind to date, a recent publication in Nature assessed the spectrum of de novo variants in neurodevelopmental disorders in more than 31,000 individuals. The authors identify more than 250 disease-associated genes, highlight 28 novel genetic etiologies, and highlight signals in their data that hint at more than 1,000 disease-associated genes yet to be discovered. In this blog post, I have summarized the five take-home messages from this large study. Continue reading
DUF1220, autism, and highly dosage-variable genes
Copy numbers. When we discuss structural genomic variants in the human genome on the Channelopathist blog, we usually refer to regions where simple deletions or duplications exert a pathogenic effect. However, there are also genes that are highly copy number variable, sometimes present at 80 copies or more. Copy numbers of a few of these genes have expanded during human evolution recently, turning these genes into potential candidate genes for human disease. A recent paper in PLOS Genetics now examines the role of DUF1220, which encodes a protein domain of the NBPF genes. This domain shows an unusually broad range of copy number variation in the human genome. Interestingly, this gene resides right next to the 1q21.1 region that is implicated in various neurodevelopmental disorders. Continue reading
Surrendering to genomic noise – de novo mutations in schizophrenia
Heterogeneity. Family-based exome sequencing or trio exome sequencing for de novo mutations is currently the method of choice to identify genetic risk factors in neurodevelopmental disorders. However, given the increasingly recognized variability in the human genome, the hunt for causative de novo mutations is sometimes an uphill battle – it is impossible to distinguish causal mutations from random events unless genes are affected repeatedly. In a recent publication in Nature, Fromer and colleagues present the most comprehensive search for de novo mutations in schizophrenia to date. They observe an incredible genetic heterogeneity that reflects the genetic architecture of neurodevelopmental disorders. Continue reading