Unlocking STXBP1 through Electronic Medical Records

Understanding the EMR. Several weeks ago, I gave a presentation at the STXBP1 Summit conference, the third annual meeting since the first in 2019 – a time when I had just entered the field of neurogenetics. It has been fascinating to follow one of the neurodevelopmental genes with the “fastest growing knowledge,” with the expanded scope of clinical studies and emergence of novel avenues for targeted gene therapies on the horizon. However, one of the many projects our STXBP1 team is currently working on takes a somewhat atypical approach – we aimed to map the natural disease history of STXBP1-related disorders based entirely on reconstructed Electronic Medical Records (EMR). Here are some of the challenges we have had to confront and what we learned searching for meaning in the depth of the EMR. Continue reading

Understanding development and seizures in STXBP1 disorders

STX. I have to admit that the main gene that our team is working on has received relatively little attention on our blog, even as several manuscripts on STXBP1 have recently been published that add to our understanding of STXBP1-related disorders. I described STXBP1 at the Simons Foundation’s INSYNC-AS meeting as one of the genes with the “fastest growing knowledge,” now following close behind recognized neurodevelopmental disorders including Rett and Angelman Syndrome. In this post, I would like to feature one of our recent publications in Neurology Genetics that assessed the developmental trajectory of 48 individuals with STXBP1-related disorders. In particular, I would like to zero in on the most important result of this study, which expands on one of the controversies in the STX field. Continue reading

Make data speak in rare childhood epilepsies

Capturing data. While genetic analysis can be performed and investigated on an industrial scale in thousands of individuals in parallel, the analysis of clinical data is frequently still the domain of manual data curation. Clinical data is typically collected in a non-standardized way, which makes it difficult for information generated in a clinical context to be used in a systematic data analysis as can be performed with genomic data. However, the tide is turning, and we are slowly coming around to the idea that clinical data also requires the same degree of standardization in order to be used at scale. For none of the epilepsies is such standardization more important than for the rare epilepsies, which include many of the genetic epilepsies. Our lab has been working on frameworks and methods to allow for this kind of analysis in genetic epilepsies. Here is a brief summary of what it actually means to “make data speak”, which has become the mission statement of our lab. Continue reading