SCN1A and Dravet Syndrome – your questions for the Channelopathist

Comments. After posting our 2015 update on what you should know about SCN1A, we received a number of comments on our blog and by email. We usually have the policy to respond to every comment individually. However, after we had realized that we had fallen behind with a few replies for several weeks, we felt that it might be worthwhile rephrasing some of the questions as general topics to write about, especially since many of your questions raised interesting points. Here are the questions that you asked regarding SCN1A and Dravet Syndrome. Continue reading

SCN8A encephalopathy – and how it differs from Dravet Syndrome

Nav1.6. For some reason, SCN8A always met some resistance. In contrast to other epilepsy genes, it took a while for the community to embrace this gene as a genuine cause of epileptic encephalopathies. A recent publication in Neurology now investigates the phenotypic spectrum of SCN8A encephalopathy – and points out important features that distinguish this condition from Dravet Syndrome. Continue reading

Beyond the Ion Channel – and back

Where do all the ion channels come from? I would like to start off with a brief commentary about the current state of gene discovery in human epilepsy. Some of our readers rightfully took offense to my previous statement that gene discovery in epilepsy it over – quite the contrary is true, and I apologize for any confusion that I may have caused. Gene discovery in epilepsy is one of the few areas of human genetics with an ongoing, rapid sequence of gene discovery with a tremendous translational potential. But we also need to reconsider the name of this blog – we are far from being beyond the ion channel. The ion channel concept has made a remarkable return in human epilepsy genetics. Let’s find out why. Continue reading

Typical versus atypical: exome sequencing in pediatric epilepsies

Exome mining. Trio exome sequencing is both easy and difficult at the same time. If you manage to identify a plausible de novo mutation, the job is pretty much done. However, if no plausible de novo is found, things can become complex very quickly. Some of the known genes for recessive disorders are quite variable and therefore difficult to interpret. Also, we know little about the overall spectrum of the recessive disorders and the plausibility of atypical cases. A recent paper in Clinical Genetics takes a comprehensive approach to the genetic basis of pediatric epilepsies by exome sequencing. The authors include the analysis of recessive and compound heterozygous variants, and they follow up on some of the biomarkers that establish the diagnosis. There are some surprising findings. Continue reading

The top three publications in epilepsy genetics 25 years ago

Looking back. In this week’s ILAE Genetics Commission post, we would like to look 25 years back and examine the most important publication in the field in 1989, the year the Berlin wall fell. What concepts did we have back then and how did our understanding of epilepsy and genes change? Here are the top three publications of 1989. Continue reading

Story of a genetic shape-shifter: SCN2A in benign seizures, autism and epileptic encephalopathy

The other sodium channel gene. The week before Christmas, the Kiel group identified its first patient with SCN2A encephalopathy. At the same time, a questionably benign SNP in the same gene is haunting our Israel Epilepsy Family Project. Time to review the mysterious SCN2A gene that initially entered the scene as a candidate for a rare, benign familial epilepsy syndrome – only to return as one of the most prominent genes for autism, intellectual disability, and epileptic encephalopathies to date. Continue reading

The children of the genomic revolution

Invitation for the Young Investigators workshop in Kiel, August 23rd-25th, 2012

The workshop. We would like to invite all young scientists within the EuroEPINOMICS program for a joint workshop on pediatric epileptology in late August this year. As a spin-off of the EuroEPINOMICS program, we successfully acquired funding for this workshop through the Hamburg Academy of Science. The idea behind this workshop is to bring together young clinicians and researchers working in the field of pediatric epileptology for an intensive exchange of experiences and knowledge. Researchers from different areas will have the chance to meet and learn from each other and to initiate new collaborations and networks.

The sun is setting over the Mornington Peninsula, Australia. Much of the genetic architecture of the epilepsies is still an unknown terra australis that needs young researchers to understand it.

Preliminary Program. We are planning to have talks by young researchers who will present a broad overview and provide insights into recent discoveries on the genetic causes of pediatric epilepsies, the pathophysiological mechanisms and the clinical relevance. Keynote lectures by experienced scientists including Olivier Dulac (“Is pediatric epilepsy research beneficial?”) and Kristien Hens (“Ethical issues in paediatric epilepsy research“) will provide an interesting framework for this meeting. Additionally, all participants may present their current research projects and critically discuss them with their peers. Following this full work program, we will enjoy the summer evenings at the Baltic Sea in Kiel. Here you will find the links to the flyer and the preliminary program for the workshop.

Travel support is granted. We will support participants with the travel expenses and this meeting is without a registration fee thanks to the support of the Academy of Science, University of Kiel and other sponsors. For more information visit our website or contact us on

We are looking forward to seeing you in Kiel in August. Don’t miss it!

Next Generation Sequencing as a diagnostic tool in the epilepsy clinic

Remember Guthrie cards and the heel stick for newborn screening? It will be a thing of the past in 10 years replaced by methods performed through Next Generation Sequencing (NGS). NHGRI and NICHD have already committed to a $25M program for Next Generation Sequencing in Newborn Screening and first reports appear describing the value of exome sequencing in solving undiagnosed cases. However, these reports all leave clinicians working in the epilepsy clinic scratching their heads – this all sounds very good, but what can you offer your patients already, not just in 2-3 years?

265 genes at once. A team led by the EuroEPINOMICS researchers Johannes Lemke and Saskia Biskup has now evaluated the feasibility of targeted Next Generation Sequencing of a panel of epilepsy genes and the results published in Epilepsia last week are quite impressive. With their panel of 265 genes, they identified mutations in 16/33 patients with unclassified, presumably genetic epilepsy. While the overall yield of this candidate panel is probably lower than the impressive 50% in their pioneer study, these results clearly show that the general workflow in the epilepsy clinic is ready to shift from candidate gene screening to Next Gen panel analysis.

New and old genes identified. The list of genes identified in their screening is a mixed bag of epilepsy genes, many of which were identified in syndromes with a high degree of clinical suspicion including mutations in SCN1A, SCN2A and KCNQ3. Interestingly, some unlikely candidates also popped up. One patient with a clinical picture of Dravet Syndrome (DS) had a mutation in TPP1, the gene causative for Neuronal Ceroid Lipofuscinosis Type 2. This unexpected finding highlights another important “side-effect” of NGS: we will probably discover many unusual phenotypes for known disorders.

You wouldn’t think so, but panels are sometimes more thorough. Lemke and coworkers identify mutations in SCN1A in three patients with DS. This alone would not be all that remarkable. However, these three patients were previously reported to be negative for SCN1A by Sanger sequencing. This phenomenon is not new. In addition to identifying GABRA1 in SCN1A-negative DS, Mefford and colleagues also identified a mutation in SCN1A by exome in a patient with DS that was missed by conventional sequencing. While it is difficult to compare exome and conventional sequencing, these two anectodes at least suggest that NGS is not fairing any worse than conventional methods.

Study by Lemke et al. demonstrating the usefulness of targeted NGS in patients with epilepsy. Unlike few other genetic technologies, targeted NGS is very likely to alter your work flow in clinic at short term.

Targeted sequencing vs. exome. In the upcoming 12-24 months, we expect an intense debate on whether targeted sequencing is actually necessary or whether you could directly apply diagnostic exome sequencing. Targeted technologies – for now – have the advantage of the higher coverage, i.e. the eventual quality and completeness of candidate gene sequences higher than in exome studies. However, the field is evolving and the next, better technology might already be around the corner.