TRPM3 – a heat sensor involved in epileptic encephalopathies

A long-awaited answer. Gene discovery in the epilepsies is continuing, and some novel genetic etiologies are quite surprising given that the particular genes had previously been described in a completely different context. One of these examples is TRPM3. In our recent publication, we further define TRPM3 as a gene causative of a variety of neurodevelopmental disorders. Also notably, we find that the anti-seizure medication primidone can be a helpful treatment in individuals with TRPM3. Beyond outlining the TRPM3 spectrum, our publication helped us find a long-awaited diagnosis for one of our research participants, one that took four years to prove. Here is the TRPM3 story. Continue reading

SCN1A gain-of-function, paralogs, and the Philadelphia variant

Between the ion channels. Rather than going “beyond the ion channel,” in this post, we aim to look between them. We want to dive into a study where examining the group of epilepsy-related sodium channels was initially more informative than the single gene itself—even when that gene was SCN1A, the most established epilepsy gene. A recurrent SCN1A variant turned out to be part of an emerging, previously underappreciated gain-of-function spectrum. Here, we discuss the unusual phenotype of SCN1A gain-of-function variants and how we are currently working on integrating information on paralogs into the official ACMG variant curation criteria.

Continue reading

Dravet Syndrome and rare variants in SCN9A

How monogenic is monogenic? Dravet Syndrome is a severe epileptic encephalopathy starting in the first year of life. More than 80% of patients have mutations or deletions in SCN1A, which makes Dravet Syndrome a relatively homogeneous genetic epilepsy. In addition to SCN1A, other genetic risk factors for Dravet Syndrome have been suggested, and current, large-scale studies including EuroEPINOMICS-RES are studying the genetic basis of the minority of Dravet patients negative for SCN1A. A recent paper in Epilepsia now suggests that a significant fraction of patients with Dravet Syndrome also carry rare variants in SCN9A in addition to the mutations in SCN1A. Is a mutation in SCN1A not sufficient to result in Dravet Syndrome, but needs additional genetic modifiers? Continue reading

Seizures beget seizures through splicing in flies

The dynamic genome. Up to 95% of human genes undergo a process called alternative splicing. For these genes, several exons are present, which can be used alternatively or can be omitted. Accordingly, a single pre-mRNA can result in a variety of different proteins with different properties. For key players such as voltage-dependent sodium channels, it is therefore interesting to know which role alternative splicing plays in epilepsy. However, the splicing landscape of human sodium channels is complicated and difficult to investigate. Therefore, a model system is required where simple questions can be asked. A recent study now reveals interesting findings related to sodium channel splicing and seizure in the fruit fly.  Continue reading