Expanding clinical actionability in GLUT1 Deficiency through a blood-based biomarker

GLUT1DS. Disease-causing variants in SLC2A1 are associated with a rare genetic neurometabolic condition known as GLUT1 Deficiency Syndrome (GLUT1DS). While GLUT1DS is typically diagnosed through molecular genetic testing, the diagnostic strategy in some cases includes lumbar puncture to measure cerebrospinal fluid (CSF) glucose to confirm the diagnosis. In a recent study, Mochel and collaborators performed a multicenter validation study of a blood-based biomarker for GLUT1DS. Here is a brief review on their publication and the utility of molecular biomarkers in GLUT1DS and genetic epilepsies more broadly.

Continue reading

Identifying the Doose gene – SLC6A1 mutations in Myoclonic Astatic Epilepsy

Doose Syndrome. In the early 1970s, a group of children with severe childhood epilepsies was found to have comparable clinical features that consisted of quick jerks and subsequent drop attacks amongst other types of epileptic seizures. These seizures, myoclonic-astatic or myoclonic-atonic seizures, eventually became the defining feature of an epilepsy syndrome referred to as Myoclonic Astatic Epilepsy or Doose Syndrome. In the recent issue of the American Journal of Human Genetics, we report on the first true gene for Doose Syndrome. Here is the story of SLC6A1 (GAT-1). Continue reading