GABRB3, 15q dups, and CNVs from exomes

GABAergic. Let’s start out with a provocative statement. There is a single gene that may explain more cases of Lennox-Gastaut Syndrome (LGS) and Infantile Spasms (IS) than you would expect, rivalling SCN1A for the most common gene found in this group of patients. It’s a gene that you are probably aware of but that you may think to be a very rare finding. In a recent publication in Annals of Neurology, the Epi4K consortium published their recent analysis of copy number variations that were derived from exome data. Combining de novo mutations and copy number variations points to GABRB3 as a major player in LGS and IS, explaining probably more than 2% of patients. Let’s find out about the twilight zone, strategies to obtain structural variants from exomes, and the re-emergence of the 15q duplication syndrome. Continue reading

Identifying the Doose gene – SLC6A1 mutations in Myoclonic Astatic Epilepsy

Doose Syndrome. In the early 1970s, a group of children with severe childhood epilepsies was found to have comparable clinical features that consisted of quick jerks and subsequent drop attacks amongst other types of epileptic seizures. These seizures, myoclonic-astatic or myoclonic-atonic seizures, eventually became the defining feature of an epilepsy syndrome referred to as Myoclonic Astatic Epilepsy or Doose Syndrome. In the recent issue of the American Journal of Human Genetics, we report on the first true gene for Doose Syndrome. Here is the story of SLC6A1 (GAT-1). Continue reading

Twisting DNA and seizures: TDP2 mutations in neurodegeneration with epilepsy

Torsional stress. The DNA double helix has one major problem that we know from telephone cords: it is difficult to untangle. However, our DNA is constantly twisted and untangled for gene transcription. This constant twisting and untwisting produces torsional stress that is relieved by topoisomerases. A recent publication in Nature Genetics now identified a human neurological phenotype that is caused by faulty activity of this mechanism: neurodegeneration with epileptic encephalopathy. However, there are some features of the phenotype that are not easily explained by erroneous DNA twisting. Continue reading