Copy Number Variations in the epilepsies – a 2020 update

CNV. There are different forms of genetic variation and historically, our ability to query the entire exome or genome is a relatively recent development. However, the first type of genetic variation that could be assessed in the epilepsies in large cohorts were copy number variations (CNV), small gains or losses of chromosomal materials. In a recent study, the entire Epi25 cohort was analyzed for CNVs, giving a long-needed update on the role of the structural genomic variations in various forms of epilepsies and highlighting that the overall landscape of CNVs in the epilepsies is well understood and delineated. With up to 3% of individuals with epilepsies carrying some of the recurrent CNVs, this type of genomic variation remains a rare, but important source of genetic morbidity in the epilepsies. Continue reading

Somatic mosaicism of SLC35A2 in focal epilepsy: an emerging common genetic mechanism

Somatic mosaicism in focal epilepsy. Recent findings highlighted the role of somatic parental mosaicism in epileptic encephalopathies. However, somatic mosaicism has also emerged over the last few years as a prominent mechanism in the pathogenesis of lesional focal epilepsies, including focal cortical dysplasia (FCD) type 2 and hemimegalencephaly. Previous studies have identified the role of mosaicism of genes such as MTOR, TSC1/TSC2, and genes encoding components of the PI3K/AKT pathway in patients with epilepsy secondary to brain malformations. A recent study in Annals of Neurology has identified a new unrelated genetic cause of refractory non-lesional focal epilepsy, which leads us to wonder what role mosaicism may be playing in focal epilepsies without obvious findings on MRI.
Continue reading

A question of conformation – chemical correction of LGI1 dysfunction

ADTLE. Autosomal Lateral Temporal Lobe Epilepsy is a rare monogenic epilepsy that has epileptic seizures with auditory auras as the most impressive feature. This condition is caused in LGI1. In contrast to most other autosomal dominant epilepsies, LGI1 is not an ion channel, but a secreted protein that binds to synaptic cell adhesion proteins. Therefore, the function of LGI1 has always remained slightly mysterious. In a recent publication in Nature Medicine, the functional properties of two LGI1 mutations are modelled in mice. Allowing neurons to secrete altered LGI1 protein otherwise targeted for degradation helped recover some of LGI1’s function. Continue reading

2B or not 2B – mutations in GRIN2B and Infantile Spasms

Year of the glutamate receptor. A few months ago we wrote a post about the triplet of Nature Genetics publications that established GRIN2A mutations as a cause of disorders within the epilepsy aphasia spectrum. GRIN2A codes for the NR2A subunit of the NMDA receptor, one of the most prominent neurotransmitter receptors in the Central Nervous System. Now, a recent paper in the Annals of Neurology reports mutations in the GRIN2B subunit as a cause of Infantile Spasms. Interestingly, the functional consequences of these mutations are completely different from GRIN2A-related epilepsies. Continue reading

Copy number variations and the forgotten epilepsy phenotypes

Complexity. Structural genomic variants or copy number variations (CNV) are known genetic risk factors for various epilepsy syndromes. In fact, CNVs might represent the single most studied type of genetic alterations across a very broad range of epilepsy syndromes. There is, however, a group of patients that is usually not investigated in genetic studies: patients with presumable lesional epilepsies or questionable findings on Magnetic Resonance Imaging (MRI). Many of these epilepsies are usually thought to be secondary to the identified lesion, and genetic risk factors are not considered.  In a recent study in the European Journal of Human Genetics last week, we investigated the role of CNVs in a cohort of patients with complex epilepsy phenotypes that were not easily classified into existing categories. Many of patients included had definite or questionable findings on MRI.  The results of our study made us wonder whether the boundary between lesional and genetic epilepsies needs to redrawn. Continue reading

Guilt by association: SCN1A in Temporal Lobe Epilepsy

GWAS. Genome-wide association studies investigate the association of common genetic variants with disease in large patient samples. While this approach has been very successful in many other diseases, the results in epilepsy research have been less convincing. Given the complexity of epilepsy phenotypes, selection of the right epilepsy phenotype has been an ongoing debate. Now, a recent study in Brain finds an intronic variant of the SCN1A gene that is associated with Temporal Lobe Epilepsy (TLE), the most common epilepsy in man. Interestingly, the association with SCN1A seems to be specific for only a particular subtype of focal epilepsies. Continue reading

A metabolic disorder masquerading as adult-onset focal epilepsy

Bella Italia. What a strange day. I am on “emergency duty” for the first day of kindergarten for our daughter. Since the kindergarten is a few meters down the road, I decided to stay home. However, as our windows are currently being replaced, I had nowhere to go. I ended up in a small cafe nearby that I hadn’t noticed before, which turned out to be authentically Italian. Between cornetto e cappuccino, I tried to catch up with some of my blogging duties. For quite some time, I had carried around a case report in the Orphanet Journal of Rare Diseases that I eventually managed to read. In this paper, the authors report on a sib pair with alpha-methylacyl-coA-racemase deficiency (AMACRD). Alpha what?? Exactly. I hadn’t heard of this before, either. However, what raised my interest was the phenotype of one of the patients – adult-onset focal epilepsy. Continue reading