The familial risk of epilepsy – revisited

Missing heritability. The concept of missing heritability is often invoked to demonstrate that existing genetic techniques only identify a fraction of the overall genetic risk for human diseases including the epilepsies. This statement implicitly assumes that we have a good and solid understanding of what the magnitude of genetic risk actually is. However, when looking at the epidemiological studies that have investigated familial risk of epilepsy, some of these studies have inherent problems, including small sample sizes, different phenotype definitions, recruitment bias, and lack of controls. A recent study in Brain now reassesses the familial risk of epilepsy in a population-based cohort of the Rochester Epidemiology Project. There are few instant classics in the field of epilepsy genetics – this study is one of them. Continue reading

Temperature rising: 17q12 microduplications and GEFS+

GEFS+, meet CNV. Microduplications at 17q12 have been identified in various neurodevelopmental disorders and in some unaffected individuals, a pattern familiar from other structural genomic variants such as microdeletions at 16p13.11 and 15q11.2. In contrast to the corresponding microdeletion, most 17q12 microduplications are inherited. This suggests that the microduplication is a risk factor, but does not fully explain the phenotype. In a recent paper in Neurology, Hardies and collaborators look at the families of 17q12 microduplication carriers with epilepsy. And this is when they noticed something strange. Continue reading

Close encounters of the third kind – rare genetic variants in families

A new beast. Rare genetic variants probably account for a significant fraction of the genetic liability to many common and rare disorders. Rare variants occupy the liability space between monogenic variants and common genetic variants. Their existence has often been postulated, and genetic investigations looking at copy number variants have elucidated some examples of rare variants. These rare variants appear to carry particular properties that are quite unexpected including the way that these variants run in families. Now, in a recent paper in the European Journal of Human Genetics, we have developed a model of the way rare variants behave in families. And there is a lot of misbehaving. Continue reading