Dynamin 1, the synapse, and why epilepsy gene discovery is now officially over

E2 consortium. Infantile Spasms and Lennox-Gastaut Syndrome are two epilepsy syndromes with a strong genetic component. De novo mutations play an important role in genetic epilepsies. However, given the overall mutational noise in the human genome, telling causative genes from innocent bystanders is difficult. In the largest and most comprehensive analysis so far, our E2 consortium just published a joint analysis of 356 patient-parent trios, which were analyzed by exome sequencing. In addition to implicating DNM1, GABBR2, FASN, and RYR3, this publication sends a clear message: the age of gene discovery in epilepsy is over – from now on, genes will find themselves. Let me tell you what I mean by this. Continue reading

Critical brain-expressed exons and de novo mutations in autism

Selection. De novo mutations in neurodevelopmental disorders including autism, schizophrenia, and intellectual disability raise an important question: are the mutations identified in patients pathogenic or are they simply genomic noise? A recent study in Nature Genetics tries to answer this question by looking at expression of particular exons in the brain and the overall mutational burden in these exons. They come up with critical exons, which seem to be particularly vulnerable in Autism Spectrum Disorder. Continue reading

Twisting DNA and seizures: TDP2 mutations in neurodegeneration with epilepsy

Torsional stress. The DNA double helix has one major problem that we know from telephone cords: it is difficult to untangle. However, our DNA is constantly twisted and untangled for gene transcription. This constant twisting and untwisting produces torsional stress that is relieved by topoisomerases. A recent publication in Nature Genetics now identified a human neurological phenotype that is caused by faulty activity of this mechanism: neurodegeneration with epileptic encephalopathy. However, there are some features of the phenotype that are not easily explained by erroneous DNA twisting. Continue reading

The familial risk of epilepsy – revisited

Missing heritability. The concept of missing heritability is often invoked to demonstrate that existing genetic techniques only identify a fraction of the overall genetic risk for human diseases including the epilepsies. This statement implicitly assumes that we have a good and solid understanding of what the magnitude of genetic risk actually is. However, when looking at the epidemiological studies that have investigated familial risk of epilepsy, some of these studies have inherent problems, including small sample sizes, different phenotype definitions, recruitment bias, and lack of controls. A recent study in Brain now reassesses the familial risk of epilepsy in a population-based cohort of the Rochester Epidemiology Project. There are few instant classics in the field of epilepsy genetics – this study is one of them. Continue reading

Rare Epilepsy Syndromes and the Congenital Disorders of Glycosylation

Rare Epilepsy Syndromes. Motivated by a recent paper in JIMD Reports, I wanted to use this post to present a very rare group of disorders, in which glycosylation of a variety of tissue proteins and/or lipids is deficient. These so-called congenital disorders of glycosylation (CDG) are a highly heterogeneous group of recessive disorders that you might be confronted with. As CDG may masquerade as otherwise non-specific epileptic encephalopathies, you might encounter them clinically or by browsing through exomes of patients with RES. Imtiaz and colleagues now report on two brothers in a large Saudi family with 18 affected siblings. They identified a mutation in DPAGT1, which is known to cause CDG Ij.   Continue reading

Jumping genes in the brain – single neuron sequencing of L1 retrotransposons

The not so static genome. We usually think that our genome is static and that differences between cell types usually arise through mechanisms that do not necessarily involve alterations of the DNA structure. This suggestion has been challenged by initial data suggesting that retrotransposons may be particulary active in neurones. Now, a recent study in Cell investigates the role of jumping genes using single-cell sequencing of neurons.

Continue reading