STXBP1 – here is what you need to know in 2023

STXBP1. Today is the first day of the 1st European STXBP1 Summit and Research Roundtable, held from May 16-18th in Milan, Italy. This meeting is bringing together voices from academia, industry, organizations, and family foundations to discuss the current state of research – spanning from preclinical efforts investigating mechanisms of disease to moving towards the clinic and the future therapeutic landscape. In 2023, it feels like an understatement to say that STXBP1 is on the map. In spirit of the ongoing momentum in the field, we wanted to refresh the gene page and outline three emerging frameworks to think about STXBP1.

Continue reading

Seizure prediction using real world data – a learning health system realized

Neonatal seizures. Neonatal seizures can lead to serious consequences for newborns, including long-term morbidity and mortality. In high-resource neonatal intensive care units, screening for seizures with CEEG has become commonplace and is considered standard of care. Accurate seizure prediction can help optimize the allocation of CEEG resources and improve care for critically ill neonates. In our recent study, we aimed to develop seizure prediction models using data extracted from standardized EEG reports. Here is a brief overview of our findings using real-world data to predict seizures in neonates.

Continue reading

The science of data visualization in epilepsy genetics

Language. In the recent years, there has been an emerging focus on the phenotypic characterization of genetic epilepsies and neurodevelopmental disorders. With a rise in large-scale studies leveraging massive and complex genetic and phenotypic datasets, understanding how we make sense of big data becomes critical. However, determining what are clinically meaningful findings and communicating the conclusions we make from these datasets remain a challenge. While we typically think about data in the scope of ‘n’s, probabilities, and p-values, there is understated value in the visualization of information. Here is a different way of how we think about scientific communication and how we can “make data speak in childhood epilepsies.”

Continue reading

Phenotypes are like water – Rare Disease Day 2023

Phases. Today is Rare Disease Day. I would like to use this opportunity to explain some of the phenotype science that is critical for rare diseases. In contrast to common disorders, rare diseases face an unusual challenge. Once identified, the overall rareness of these condition poses the question of where phenotypes begin and where they end. For rare genetic disorders, is the phenotype of the first individual identified with a rare disease characteristic, or is there a larger spectrum that we should be aware of? Enter the various approaches to phenotype science that aim to decipher the full depth of clinical features associated with rare diseases. In order to understand the various approaches to rare diseases phenotypes, I would like to suggest a somewhat unusual analogy: phenotypes are like water.

Continue reading

The genetics of FIRES and status epilepticus in 2023

FIRES. As a rare and severe epilepsy syndrome, febrile-infection related epilepsy syndrome (FIRES) is characterized by refractory status epilepticus (RSE) preceded by a febrile illness and often leads to prolonged hospitalizations, cognitive impairment, and intractable epilepsy. There are currently no clear causative etiologies identified in FIRES, and the underlying genetic architecture remains elusive. Here is a brief summary of our recent manuscript on the genetics of FIRES and refractory status epilepticus. This is what we learned about one of the most enigmatic conditions in child neurology.

Continue reading

Precision medicine in the absence of outcomes

EMR. Genomic data is increasingly available for large patient cohorts. In parallel, healthcare is increasingly digitized and large amounts of data can easily be extracted and analyzed at the click of a button. In principle, this should provide tremendous opportunities to understand how epilepsy care can be personalized based on genetic factors. However, we quickly run into challenges. Obtaining information on seizure frequencies, for example, requires manual chart review. Trying to understand how a person’s genetic makeup affects responses to anti-seizure medications is therefore not possible in large healthcare systems where related questions in other diseases can increasingly be answered. Here is a brief overview of how we can meaningfully engage with clinical data when outcomes are simply not available. Continue reading