Mutation intolerance – why some genes withstand mutations and others don’t

The river of genetic variants. The era of high-throughput sequencing has given us several unexpected insights into the human genome. One of these insights is the observation that mutations or variations can occur in parts of our genome without any major consequences. Every individual is a “knockout” for at least two genes in the human genome. This means that in every individual, both copies of a single gene are disrupted through mutations or small deletions or duplications. In addition, there are dozens, if not hundreds, of genes with disruptive mutations that affect only a single copy of the gene. Similar mutations in specific disease-associated genes, however, will invariably result in an early onset genetic disorder. This comparison already shows that the genes in the human genome differ with respect to the amount of disruptive genetic variation they can tolerate. A recent study in PLOS Genetics now tries to catalogue the genes in the human genome by assessing their mutation intolerance based on the genetic variation seen in large-scale exome datasets. Many genes for neurodevelopmental disorders are highly intolerant to mutations. Furthermore, some genes for monogenic epilepsies show surprising results in this assessment. Continue reading

Less is more – gene identification in epileptic encephalopathies through targeted resequencing

Exome no more. Over the last 15 months, we have repeatedly discussed how exome sequencing or genome sequencing is applied to neurodevelopmental disorders in order to discover new candidate genes and to assess the role of known candidate genes. We have also wondered sometimes whether exome sequencing is the most straightforward approach. Now – outpacing the two large international consortia using exome sequencing in epileptic encephalopathies – a recent study in Nature Genetics uses a different approach to uncover the genetic basis in 10% of patients with epileptic encephalopathies.  Targeted resequencing or gene panel analysis is a hybrid technology between candidate gene sequencing and next generation sequencing and focuses only on a subset of candidate genes. While their study provides a comprehensive overview over the genetics of rare epilepsy syndromes, it raises the question whether the era of large-scale exome sequencing is coming to a natural end. Continue reading

Exome sequencing in epileptic encephalopathies – a classification of de novo mutations

Trio-sequencing your clinic. From the perspective of a child neurology clinic, I often wonder how much information we would gain if we performed trio exome sequencing for de novo mutations systematically in all our patients with difficult-to-treat epilepsies. Many of these patients have epilepsies that are difficult to classify and they have not been included in our existing EuroEPINOMICS working groups on defined syndromes. Now, a recent publication in Epilepsia gives us an idea what we will find if we perform family-based exome sequencing in patients with unclassified epileptic encephalopathies. Basically, you will find SCN1A and CDKL5 plus mutations in several genes that are likely pathogenic. But there is much more to this issue, which motivated me to come up with a classification scheme for epilepsy-related de novo events.  Continue reading

Axiomatic – identifying a novel epilepsy gene that was hidden right before your eyes

The Hague, winter of 1997. Last week challenged my most basic beliefs, which reminded me of “Axiomatic”, a collection of science fiction short stories by Greg Egan. While on holiday in the Netherlands in 1997, I had bought this book in the Den Haag Centraal bookstore, and subsequently lost it or gave it away. I only remembered the title three weeks ago, and ordered it online. The book arrived at the same time that news from Antwerp twisted my brain. In the signature story of “Axiomatic” with the same title, a man acquires a nano-robot based implant that allows him to change his innermost convictions (I told you that it’s science fiction, right?). He basically wants to have the courage to kill the man who murdered his wife. After carrying out his revenge and after the effect of the axiomatic implant has worn off, he starts craving for more, since he is missing the certainty in his life that the implant had given him. I needed to adjust my deeply held expectation on how to find de novo mutations after Tania, a PhD student in the Antwerp lab, had pulled out a de novo mutation in one of our trios that Denovogear had missed. This mutation turned out to be another hit in a gene that we had seen before. Continue reading

How to detect de novo mutations in exome data

Taking things apart. Looking for de novo variants using trio exome sequencing is a powerful technique to identify disease-related genes. After having introduced samtools during the last post, this will be post 2/3 in a series on how to perform an analysis of exome data for de novo variants. This time, I would like to take apart the methods that take us from Gigabyte BAM files to small tables with likely variants. So buckle up. Continue reading

Hypermutability of autism genes: lessons from genome sequencing

Pushing past the exome. Family exome sequencing has become a standard technology to identify de novo mutations in neurodevelopmental disorders including autism, schizophrenia, intellectual disability and epilepsy. Despite the many advances in the field, exome data is confusing and difficult to interpret. Accordingly, we were wondering what the increase from exome sequencing to genome sequencing might add other than more data and more questions. Now, a recent paper in Cell reports on family-based whole-genome sequencing in autism. And some of the results are quite surprising. Continue reading

De novo mutations in Infantile Spasms and Lennox-Gastaut Syndrome

Quantum leap. At the Annual Meeting of the American Epilepsy Society, the Epi4K consortium presented the first data on exome sequencing in epileptic encephalopathies. This data is the most exciting finding in the field of epilepsy genetics in 2012 so far, as it provides a deep insight into the genetic architecture of Infantile Spasms (IS) and Lennox-Gastaut Syndrome (LGS). With the findings presented by the Epi4K collaborators, the epileptic encephalopathies are joining a group of neurodevelopmental disorders with a significant burden of de novo mutations.  However, there are important differences that set both IS and LGS apart from diseases like autism, intellectual disability and schizophrenia. Continue reading

Validation of rare variants – the power of finding anything at all

How much? Last week, we discussed the probability of finding de novo variants in patients with epileptic encephalopathies, but our calculations were only half the story. Genes that are identified through genome-wide sequencing technologies are often validated in additional cohorts. In many cases, we will only be able to establish a given gene as causative if we find another patient with a mutation in this gene. I was therefore asked to write an additional post on power calculations for rare variants in validation cohorts. Let me tell you the story how I stumbled across a little bit of almost forgotten high school math. Continue reading

Exome sequencing in epileptic encephalopathies – the powers that be

The power, over and over again. I must admit that I am thoroughly confused by power calculations for rare genetic variants, particularly for de novo variants that are identified through trio exome sequencing. Carolien has recently written a post about the results we can expect from exome sequencing studies. For a current grant proposal, I have now tried to estimate the rate of de novos using a small simulation experiment. And I have realized that we need to re-think the concept of power. Continue reading

The RES-experiments: what results can be expected

Now the experiments to find de novo variants for epileptic encephalopathies within the Euroepinomics RES-project are well underway and first data are coming out, it is a good moment to pause and think about what results we can expect, and how these should be interpreted. For this it is very nice that recent large experiments in autism have provided so much useful data. In this post, I will explore what we can expect in experiments in which we perform whole exome sequencing in a group of patients and their parents to identify de novo variants that could be the cause of the disorder.

Continue reading