Less is more – gene identification in epileptic encephalopathies through targeted resequencing

Exome no more. Over the last 15 months, we have repeatedly discussed how exome sequencing or genome sequencing is applied to neurodevelopmental disorders in order to discover new candidate genes and to assess the role of known candidate genes. We have also wondered sometimes whether exome sequencing is the most straightforward approach. Now – outpacing the two large international consortia using exome sequencing in epileptic encephalopathies – a recent study in Nature Genetics uses a different approach to uncover the genetic basis in 10% of patients with epileptic encephalopathies.  Targeted resequencing or gene panel analysis is a hybrid technology between candidate gene sequencing and next generation sequencing and focuses only on a subset of candidate genes. While their study provides a comprehensive overview over the genetics of rare epilepsy syndromes, it raises the question whether the era of large-scale exome sequencing is coming to a natural end. Continue reading

Exome sequencing in epileptic encephalopathies – a classification of de novo mutations

Trio-sequencing your clinic. From the perspective of a child neurology clinic, I often wonder how much information we would gain if we performed trio exome sequencing for de novo mutations systematically in all our patients with difficult-to-treat epilepsies. Many of these patients have epilepsies that are difficult to classify and they have not been included in our existing EuroEPINOMICS working groups on defined syndromes. Now, a recent publication in Epilepsia gives us an idea what we will find if we perform family-based exome sequencing in patients with unclassified epileptic encephalopathies. Basically, you will find SCN1A and CDKL5 plus mutations in several genes that are likely pathogenic. But there is much more to this issue, which motivated me to come up with a classification scheme for epilepsy-related de novo events.  Continue reading

De novo mutations in Infantile Spasms and Lennox-Gastaut Syndrome

Quantum leap. At the Annual Meeting of the American Epilepsy Society, the Epi4K consortium presented the first data on exome sequencing in epileptic encephalopathies. This data is the most exciting finding in the field of epilepsy genetics in 2012 so far, as it provides a deep insight into the genetic architecture of Infantile Spasms (IS) and Lennox-Gastaut Syndrome (LGS). With the findings presented by the Epi4K collaborators, the epileptic encephalopathies are joining a group of neurodevelopmental disorders with a significant burden of de novo mutations.  However, there are important differences that set both IS and LGS apart from diseases like autism, intellectual disability and schizophrenia. Continue reading