CACNA1H – this is what you need to know in 2015

Evidence. This week, we will review the evidence that links CACNA1H to human epilepsies. While this gene was initially considered a promising candidate for absence epilepsies, more recent studies have produced little supportive evidence that CACNA1H is linked to human epilepsies. However, CACNA1H may play a role in a different group of diseases, namely early-onset hypertension due to primary aldosteronism. Let’s review what it takes to be candidate gene. Continue reading

SCN1A and Dravet Syndrome – your questions for the Channelopathist

Comments. After posting our 2015 update on what you should know about SCN1A, we received a number of comments on our blog and by email. We usually have the policy to respond to every comment individually. However, after we had realized that we had fallen behind with a few replies for several weeks, we felt that it might be worthwhile rephrasing some of the questions as general topics to write about, especially since many of your questions raised interesting points. Here are the questions that you asked regarding SCN1A and Dravet Syndrome. Continue reading

The microdeletion landscape of Genetic Generalized Epilepsy

CNV. Structural genomic variations or Copy Number Variations (CNVs) significantly contribute to the genetic architecture of many neurodevelopmental disorders. However, given the enormous variation in the human genome in healthy individuals, the precise contribution of CNVs remains poorly understood. In a recent publication in PLOS Genetics, we were able to assess the microdeletion architecture in more than 1,000 patients with Genetic Generalized Epilepsy (GGE) compared to more than 5,000 controls. We found that microdeletions occur almost twice as often in GGE patients compared to controls, an analysis that revealed both known suspects and interesting candidates. Continue reading

EFHC1 – retiring an epilepsy gene

The era of gene retirement. As of 2015, the list of epilepsy genes has shrunk by one. EFHC1, a gene initially proposed to be a monogenic cause of Juvenile Myoclonic Epilepsy, is no longer an epilepsy gene. A recent study in Epilepsia finds that EFHC1 variants initially thought to be pathogenic are found in unaffected controls of the same ancestry. Follow us on one of the most perplexing journeys that modern day neurogenetics has to offer, and the retirement of the first epilepsy gene. Continue reading

CACNA2D2, the ducky mouse, and what it takes to be an epilepsy gene

Subunit. Spontaneous mouse mutants help to identify candidate genes for disease mechanisms and have hinted at an important role for ion channels in epilepsy long before the first human channelopathies were identified. The ducky mouse has absence seizures and suffers from ataxia. A truncation mutation in CACNA2D2 could be identified in this phenotype, encoding for an auxiliary calcium channel subunit. This finding emphasizes the role of calcium channels in absence seizures and begs the question whether genetic variation in CACNA2D2 is also involved in human epilepsy. A recent publication in PLOS One now identifies the second recessive CACNA2D2 mutation in a patient with epileptic encephalopathy. But are two independent cases sufficient anymore to claim causality? Continue reading