SCN3A – a sodium channel in epilepsy and brain malformations

The missing ion channel. A little more than two years ago, we wrote about our discovery of SCN3A as a novel disease gene in epileptic encephalopathies. At the time, SCN3A was the missing ion channel, the only brain-expressed voltage gated sodium channel that did not have a clear gene-disease relationship. However, since the initial discovery of SCN3A as a disease gene, both the phenotypic spectrum and variant landscape have expanded considerably. In a recent publication, we updated our knowledge based on information of 22 individuals with SCN3A-related disorders, which showed brain malformations in more than 75% of individuals and an unusual clustering of pathogenic variants in parts of the Nav1.3 channel. Continue reading

Finding the missing sodium channel – SCN3A in epileptic encephalopathy

Sodium channel. Voltage-gated channels for sodium ions are a crucial component of helping neurons depolarize and repolarize in a way that enables generation of action potentials. However, in order to function properly, voltage-gated ion channels co-exist in a fragile balance, and genetic alterations leading to functional changes in these channels are known causes of disease. SCN1A, SCN2A, and SCN8A have been implicated as causes for human epilepsy. However, SCN3A encoding the Nav1.3 channel, one of the most obvious candidates, could not be linked to disease so far. In a recent publication, we were able identify disease-causing mutations in this major neuronal ion channel. Interestingly, patients with an early onset and the most severe presentation had a prominent gain-of-function effect that responded to known antiepileptic medications. Continue reading