GNAO1 and 13K genomes – rare disease sequencing on a national level

WGS. Whole-genome sequencing is increasingly used to understand the cause of rare diseases in a research and diagnostic context. However, while the usefulness of this technology has been shown in smaller studies, it remains unclear whether strategies to understand the cause of rare disorders through whole genome sequencing can be performed on a national level. A recent study in Nature reported the first results from a national sequencing campaign for rare disorders in the UK, including the analysis of more than 13,000 genomes. In this blog post, I would like to focus on the neurogenetics component of this enormous study, which identified disease-causing variants in GNAO1 as the most common cause within the study’s subgroup of neurological and developmental disorders. Continue reading

Common genetic risk factors for epilepsy in the Japanese population

GWAS. While our blog mainly deals with monogenic epilepsies, assessing common genetic risk factors through genome-wide association studies has been an established way of understanding potential genetic contributors to both common and rare disorders. More recently, polygenic risk scores have entered the stage, composite measures of many common variants which explain a significant proportion of the overall population risk for epilepsy. However, a major limitation of many genome-wide association studies has been the focus on populations of European ancestry. So far, very few studies have examined common genetic risk factors in the epilepsies in non-European populations. In a recent publication examining results from the BioBank Japan Project, 42 disorders were examined in more than 200,000 individuals, including the epilepsies. While no single epilepsy variant stood out, the study provides an interesting confirmation of a previously known common risk factors for the epilepsies. Continue reading

SCN1A-related epileptic encephalopathy: Beyond Dravet syndrome

SCN1A phenotypes. Readers of Beyond the Ion Channel will know that we often post about SCN1A, one of the first discovered and most common genetic causes of epileptic encephalopathy. We more or less assume that we understand the phenotypes associated with pathogenic variants in SCN1A: most commonly Dravet syndrome, which is associated with de novo variants, and less commonly genetic epilepsy with febrile seizures plus (GEFS+), associated with inherited missense variants. However, a recent publication by Sadleir and colleagues suggests that the phenotypic spectrum of SCN1A-related disorders may be broader than we have previously appreciated. Are there SCN1A-related epileptic encephalopathies in addition to Dravet syndrome? Continue reading

SCN1A – what’s new in 2016?

The story of SCN1A. Variants in SCN1A were first reported in association with epilepsy in 2000, when familial heterozygous SCN1A missense variants were identified in two large families with GEFS+. The phenotype was characterized by incomplete penetrance and significant variable expressivity between family members, making it clear from the beginning that the SCN1A story would not be simple. Within the next few years, we learned that SCN1A variants could cause a wide spectrum of epilepsy phenotypes, including GEFS+, Dravet syndrome, intractable childhood epilepsy with generalized tonic-clonic seizures, and, less frequently, infantile spasms and simple febrile seizures. As it became clear that SCN1A variants played an important role in genetic epilepsies, focus turned towards understanding the mechanism underlying seizure genesis, as well as identifying management and therapy options. Even after 15 years of study, our understanding of SCN1A-related epilepsy is still evolving. Keep reading to learn more about the most recent discoveries related to SCN1A. Continue reading

The story of the missed SCN1A mutations

Dravet Syndrome. In 2011, our EuroEPINOMICS-RES program was in full swing. We had recruited a cohort of 31 patients with Dravet Syndrome who had been previously tested negative for mutations in SCN1A with the aim to identify novel genes for this epileptic encephalopathy. Even though this cohort was crucial in our identification of CHD2, HCN1, and KCNA2 as novel genes for genetic epilepsies, the main finding in this cohort was something that we did not expect. Roughly one third of our 31 patients had mutations in SCN1A, even though they had previously been tested negative. In a recent publication in Molecular Genetics and Genomic Medicine, we tried to understand what had happened and joined forces with other groups who had made the same observation. Here is the story of the missed SCN1A mutations. Continue reading

The three twists in the SCN1A story that you didn’t know about

SCN1A. Finally, after various other epilepsy genes have been added, we are trying to put together a static website on SCN1A rather than updates only. SCN1A is by far the most prominent epilepsy gene and the first genetic etiology that comes to mind for anything relating to fever and seizures. While our Epilepsiome page will give you all the relevant facts regarding this gene, here is my personal view on the SCN1A story. Continue reading