Chromosome 15q11-13: one region, many disorders

Cytogenetics. 15q11-13 can be an intimidating region, even for many seasoned genetics professionals. Several factors contribute to this, including a complex genomic architecture, genomic imprinting, an acrocentric chromosome, and several genes critical to neurological function. For today’s blog post, we’ll try to unravel some of its complexity to make interpretation of copy number variants (CNVs) in this area clearer.

Continue reading

The role of genetic counselors in the mystery, hope, and heartbreak of neurogenetics

Genetic counseling. This month, we celebrated DNA day, a successful fundraiser through Love for Liam, and the acceptance of our genetic counseling assistant (GCA), Rahma Ali, into the Emory University Genetic Counseling Training Program. On top of that, the Center for Epilepsy and Neurodevelopmental Disorders (ENDD) opens soon and we’ve been actively recruiting new GCAs and interviewing new genetic counselors (GCs). All of this has reminded our team of the vital function of our GCs both on our research and clinical teams. And, it has reminded our GC team of why we pursued this field and why we love neurogenetics in particular. As our lab expands, we are dedicating more blog posts to highlighting different team members and roles, and this week, we celebrate GCs as they share the greatest, hardest, and most exciting parts of being a GC, especially in neurology.

Continue reading

CACNA1A: the unusual tale of two proteins encoded by a single gene

CACNA1A. CACNA1A is a large gene with a long history. Its first gene-disease association was with spinocerebellar ataxia type 6 (SCA6), an adult-onset progressive neurological disorder. Next, it was found to be associated with episodic ataxia and familial hemiplegic migraine. It took several more years before it was also found to be associated with epilepsy, developmental delay, and a more severe form of hemiplegic migraine. Here is a blog post on the range of neurological disorders associated with CACNA1A and the mechanism driving it.

Continue reading

Five things to know about SLC6A1 in 2023

GAT1. The SLC6A1 gene remains one of the most common genetic etiologies to be associated with genetic generalized epilepsy and myoclonic atonic epilepsy. SLC6A1 has not received an update on our blog in a while, perhaps because unlike many other genes we see, this one has remained with a somewhat consistent clinical picture, albeit with much more detail and confidence than available back when the first papers were published in 2015-2018. Here are the five things to know about SLC6A1 in 2023.

Continue reading